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Abstract—With a growing system complexity in the IoT
framework, many networked cyber-physical systems work in a
hierarchical fashion. Layers of information outputs and command
inputs are available. An active area of research is in optimizing the
design of policies and control command that influence information
flow for such multi-layered systems. Our focus in current research
is to first formulate the control command flow for hierarchical
systems in the form of multiscale state-space models on a tree,
and then the design of an optimal control law under constraints
that relate the states of information across the system layers.
We propose a game-theoretic formulation of a robust optimal
controller for the broad class of multiscale systems having
underlying hierarchical structure. The optimization gives an H∞
controller similar to that for a discrete-time system but with scale
as the horizon. We motivate the usage of this work using a layered
building temperature control example, and discuss steady-state
behavior, convergence, and finally a comparison of our method
with the standard LQR control formulation giving supportive
simulation results.

I. INTRODUCTION

Modern day advances in the context of Internet of Things
(IoT) have opened doors to a great variety of autonomous
applications in all fields affected by IoT development. Systems
are currently developing that not only automate, speed-up,
and reduce risks, but also streamline, optimize, and parallelize
the desired operations. Complexity of such networked systems
increases rapidly, and to make systems more efficient and accu-
rate researchers are met with unequivocal infrastructural design
challenges. Different modeling schemes are proposed keeping
in track robustness, computational complexity and other design
parameters. When it comes to modeling environment and man-
made structures, data from different sources such as aerial
vehicles, if fused, can provide rich models. However, the
independent nature of the sensing sources is a problem for
data fusion. Towards this end, a useful technique is to employ
a multiscale approach for modeling, especially for information
systems with hierarchical levels of details and controls.

This is one of the main challenges of IoT – the interaction
of information signals in systems of hierarchical structure.
Sensor systems that form the backbone in IoT are used to
gather information by operating at different resolution scales.
Similarly, we can have systems that make use of remote
sensors which collect details at different (possibly layered)
levels. For example, crime incidents are reported at nearest
precincts in the city. All precincts have the combined criminal
activity information of the whole city. Likewise, it holds for
all cities in all the states of the country. This is as a pyramidal
data structure with all precincts’ data at the finest level, city
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data at one coarser level, then state data and so on.
For such hierarchical systems that are widely employed in

human organizations and data processing, decisions are made
based on the complete layered information, to regulate the
efficient mechanism of the whole body. In human systems,
every governing body uses the layered information for their
efficient policy making such as executive boards, then de-
partment managers, then project inspectors, and then team
managers, etc. All have varying constraints and goals, but
as a whole, the complete system works in collaboration for
combined benefits. These policies can be interpreted as control
strategies in the hierarchical system. For a set of policies in
such organizational-behavioral systems, it is desirable that the
objectives laid down at each layer are achieved. Moreover, each
sub-system can be constrained by its parameters. Hierarchical
systems can be found in human organizations, in massive
industrial control systems, and many other frontiers.

In this paper, we aim to solve optimal policy design
problem for hierarchical systems. We interpret the system
as a tree-like structure where every successive finer level
is a combination of two things, the information from the
one-coarser level (interpolation) and certain additional details
obtained from the high-resolution signal. While the fine-to-
coarse recursion corresponds to the multiresolution analysis of
signals, the coarse-to-fine recursion that we use for modeling
multiscale systems corresponds to the multiresolution synthesis
of signals, in which higher resolution detail is added at each
level. A control signal can alter the carriage of information
from coarse-to-finer levels. It can be captured in a state-space
representation of the system. One key aspect of these models
is that they are easily extendable for higher-dimensional pro-
cessing and control even though in our paper we focus only on
dyadic tree. This modeling scheme has its origins in the 90s in
multi-resolution signal filtering and smoothing especially for
computer vision applications (e.g. wavelets) [5].

Related Work: In the mid-90s, multi-resolution analysis of
signals was an important area of research. The underlying idea
was that signals such as sound and images can be represented
in different levels of resolution. Chou et. al. [4] developed
a state-space framework for modeling stochastic phenomenon
for signals at multiple scales which has been followed up
by the work in estimator design with data fusion [5] and its
control theoretic analyses [6]. The work [5] is particularly
relevant to our work because the authors therein make use
of standard Kalman filter for multiscale system models. It is
analogous to the standard linear-quadratic-Gaussian controller
but because of not catering for unpredictable disturbances
and noise signals, it is not robust. Our work combats worst-
case disturbance effects making our multiscale controller ro-
bust. Multiscale modeling has focused on specific applications



in the statistics and signal processing communities such as
[7][13], with numerous developments like waveletes [8] and
applications in image compression and image restoration [1].
Other uses of multiscale models for estimation tasks are
in geoscience and remote-sensing especially when there are
heterogeneous suites of sensors (infrared, visual, microwave,
etc.) [16], and also in robust state-estimation for linear time-
dynamic systems [14]. In regards to control design for multi-
layered systems, a transcale optimal controller for discrete-time
systems was developed recently by Zhao et. al. [15]. Their
theory makes use of wavelets decomposition to relate signals
across resolution levels and the optimal control problem they
tackle is seemingly very relevant to our proposed methodology.
However, our current work is inherently distinct because we
optimize in the space-domain instead of the time-domain,
making our applications and context greatly different.

Our aim in this study is to make use of this rich class
of models the theory of which has been well developed,
in a dynamic game-theoretic setting for feedback control
system design. Our analysis is similar to that of discrete-
time min-max controller design for linear systems but on
multiscale tree-like model. Literature on game-theoretic H∞
control with numerous robustness applications is substantially
investigated in the past [2][3]. Similar works on discrete-
time state-estimators based on game-theoretic frameworks are
also available [10][11][12]. Further researches in this field are
developed in recent times [9]. Despite such rich theoretical
studies, works in regard to optimal control design for multi-
resolutional systems is rarely available, other than [15]. The
key contribution of our work is to make use of the multi-
scale formulations in modern hierarchically structured systems
to develop theories for optimal control applications, and do
it using game-theoretic tools. IoT promises the merging of
interesting phenomena for such collaborative improvements.

After setting up the model in this paper, we formulate
the controller design problem as a constrained optimization
problem. This turns out to be a two-player zero-sum dynamic
game. The Nash equilibrium solution of the game is proposed
thereafter, and the conditions for optimality are discussed.
Next, we show the mechanism of our control strategy design
for the simplified problem of temperature control of a building
using computer simulations. The steady-state response and be-
havior of control performance is discussed. Lastly, we compare
the performance of our solution with standard linear-quadratic-
regulator (LQR) control law that is industry-wide the default
solution. Our solution behaves better for uncertain exogenous
disturbance inputs showing robustness.

II. MULTISCALE STATE-SPACE MODELS
Consider a dyadic tree structure of states: nodes arranged in

a layered arrangement. Fig. 1 represents K+1 levels of a latent
process on a dyadic tree. At the k-th level the (vectorized)
process is denoted by xk and its corresponding state-vector
at m-th node is xmk ∈ Rn. Thus, multiple layers of the tree
indicate different representations of the complete latent process
x. We assume that the nodes of latent process at a given level
are conditionally independent of each other given immediate
coarser level. Our tree structure has the following form of the
forward dynamics (coarse-to-fine):

xmαk+1 = Amαk+1x
m
k +Bmαk+1u

mα
k+1 +Dmα

k+1w
mα
k+1,

xmβk+1 = Amβk+1x
m
k +Bmβk+1u

mβ
k+1 +Dmβ

k+1w
mβ
k+1,

(1)

k ∈ K := {0, . . . ,K−1}; m ∈Mk := {1, . . . ,Mk}; x10 = x0,

where umk ∈ Rp is the control input and wmk ∈ Rq the
disturbance at m(k)-th node. Here, Amk represents the inter-
polation matrix, i.e., the relationship between system states at
coarse and fine levels. Bmk and Dm

k are the input matrices
for control and disturbance signals, respectively. Along the
coarse-to-fine recursion, w signals actually represent the higher
details added but because coarse-to-fine recursion is analogous
to multiresolutional synthesis of signals, w is rather interpreted
as the disturbance signal corrupting our state trajectories x
along resolution scales. Note that umαk+1 is the control command
generated at node m of level k for it first child xmαk+1, so the
control signals originating at level k, given by u

(·)
k+1, do not

have access to system states xk+1, but they have access to xk
through feedback. For a dyadic tree that we are dealing with,
the number of nodes at k-th level is at max Mk = 2k. Since
the coarsest level has just one node that we have called the
root node, so we replace the use of x10 to x0. For each m,
mα = 2m− 1 and mβ = 2m indicate its two children nodes
in next finer level and mζ = dm2 e) is its parent node at coarser
level. We assume that {wm}, i.e., the disturbance in m-th path
along coarse-to-fine scales1, is any l2 sequence2.

Model proposed in [15] constitutes of two parts: a time-
domain dynamic relationship relating nodes at a given reso-
lution level (in our notation, xm+1

k = Amk x
m
k + Bmk u

m
k ), and

the standard Wavelet Packet Decomposition (WPD) relating
these time-series signals across different resolutions in space
domain. This is inherently very different from the above model
as there is no tree structure involved and the nodes at a level
are indexed through the time-variable.
A. Problem formulation

Given a noise attenuation level γ > 0, we consider the
problem of controller design for disturbance rejection. The cost
functional, J , is constrained by this noise attenuation and we
cater for the worst-case disturbances. For any bound, b > 0,

sup
||wm||2<b2

J < (γ)2.

The goal is to determine optimal strategies for the two players,
{um∗k } and {wm∗k }, ∀k ∈ K, m ∈Mk. It is expressed as a fi-
nite horizon two-person linear-quadratic dynamic game: state-
equations are linear in umk and wmk , and the cost functional is
quadratic given by:

J({umk }, {wmk }) =

K−1∑
k=0

Mk∑
m=1

(
gmk (xmαk+1, x

mβ
k+1, u

mα
k+1, u

mβ
k+1)

−(γ2/2)(wmα
>

k+1 w
mα
k+1 + wmβ

>

k+1 w
mβ
k+1)

)
+ (1/2)x>0 Q0x0,

where the per-node cost

gmk (xmαk+1, x
mβ
k+1, u

mα
k+1, u

mβ
k+1) :=

1

2

(
xmα

>

k+1 Q
mα
k+1x

mα
k+1

+xmβ
>

k+1 Q
mβ
k+1x

mβ
k+1 + umα

>

k+1 u
mα
k+1 + umβ

>

k+1 u
mβ
k+1

)
.

=
∑

t∈{mα,mβ}

1

2

(
||Atk+1x

tζ
k +Btk+1u

t
k+1+Dt

k+1w
t
k+1||2Qtk+1

+||utk+1||2
)

1Here, let mζ denote the parent of node m, thus the set representing path
from wKm to the root is {wm} = {wmK , w

mζ
K−1, w

(mζ)ζ
K−2 , . . . , w1

0}.
2The sum of l2 norms of each wmk along the path that leads to wmK from

the root is bounded.
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Fig. 1. Dyadic tree representation of a multi-scale signal

The disturbance rejection problem can be solved easily if
we rewrite the objective as a minimax problem:

min
{umk }

max
{wmk }

J =
1

2

K−1∑
k=0

Mk∑
m=1

(
||xmαk+1||2Qmαk+1

+ ||xmβk+1||
2
Qmβk+1

+||umαk+1||2 + ||umβk+1||
2 − (γ)2(||wmαk+1||2

+||wmβk+1||
2) + ||x0||Q0

)
(2)

subject to (1).

This is a two player zero-sum game having a saddle-point
solution. Now that we have the optimization problem set up,
we derive the H∞-control law using optimization principles.

III. MULTISCALE OPTIMAL CONTROL: DISTURBANCE
REJECTION

We solve the optimization problem given in (2) constrained
by a total of

∑
k∈K |Mk| =

∑
k∈K 2k = 2K − 1 number

of equations from (1). For that we construct the Hamiltonian
that has the Langrange multipliers pmk corresponding to each
constraint equation. The Hamiltonian is composed of per-node
objectives, given ∀ k ∈ K,m ∈Mk by:

Hm
k =

1

2

(
||xmαk+1||2Qmαk+1

+||xmβk+1||
2
Qmβk+1

+||umαk+1||2+||umβk+1||
2

−(γ)2(||wmαk+1||2+ ||wmβk+1||
2)
)

+pmα
>

k+1

[
Amαk+1x

m
k +Bmαk+1u

mα
k+1

+Dmα
k+1w

mα
k+1

]
+pmβ

>

k+1

[
Amβk+1x

m
k +Bmβk+1u

mβ
k+1+Dmβ

k+1w
mβ
k+1

]
,

where pmk are the Lagrange multipliers. Saddle-point solution
to the game is characterized in the Theorem 1. But before
showing it, we make certain assumptions on the information
availability structure of the system. Firstly, we assume that
through feedback the true state xmk is perfectly observable at
each node, i.e., we have a closed-loop information structure.
This assumption can be leveraged and our main result holds
for open-loop case as well with a slight change in the existence
conditions. The terminal cost is ||x0||Q0

. Note: xk := x
[1:Mk]
k

represents all states at k-th level, similarly we have used uk and
wk. Secondly, we assume non-negative definiteness of Qmk ≥ 0
which makes J(u,w) strictly convex in u; and that J(u,w)
is strictly concave in w, which requires that ∀k,m : γ2I −
Dm>

k Mm
k D

m
k > 0 where Mm

k is recursively defined in (4).

Lemma 1. For the linear-quadratic two-person zero-sum dy-
namic game introduced above, the objective functional J(u,w)

is strictly concave in w (for all finite sequences um ∈ RpK)
if, and only if, ∀ k ∈ K,m ∈Mk

γ2I −Dm>
k Mm

k D
m
k > 0. (3)

where Mk is given as,

Mm
k = Qmk +

[
Amα

>

k+1 Amβ
>

k+1

] [Mmα
k+1 0

0 Mmβ
k+1

]
·[

(Λmαk+1)−1 0

0 (Λmβk+1)−1

] [
Amαk+1

Amβk+1

]
;Mm

K = QmK .

Proof: We first note that J(u,w) is a quadratic function of
w for all um ∈ RpK and that the Hessian of J is independent
of u. We can take u ≡ 0, without loss of generality which
reduces the concavity of J to the existence of a unique solution
for the following optimization problem:

min
{wmk }

K−1∑
k=0

Mk∑
m=1

∑
t∈{mα,mβ}

(
γ2||wtk+1||2 − ||xtk+1||2Qtk+1

)
s.t. xtk+1 = Atk+1x

tζ
k +Dt

k+1w
t
k+1.

Then, the result follows directly using standard dynamic pro-
gramming with the value function admitting the solution,

V (k, xmα, xmβ) =
∑

t∈{mα,mβ}
−xt>M t

k+1x
t + xt>Qtk+1x

t,

for all k ∈ K, m ∈Mk if and only if (3) holds.

Theorem 1. For the two-person zero-sum linear-quadratic
dynamic game described by (2) and (1), if the following are
satisfied ∀k ∈ K,m ∈Mk:

1) Qmk ≥ 0, and

2) γ2I −Dm>

k Mm
k D

m
k > 0,

we have J(u,w) strictly concave in w (c.f. Lemma 1) and
strictly convex in u, where Λmk ,M

m
k be defined as

Λmαk+1 = I + (Bmαk+1B
mα>

k+1 − γ−2Dmα
k+1D

mα>

k+1 )Mmα
k+1,

Λmβk+1 = I + (Bmβk+1B
mβ>

k+1 − γ
−2Dmβ

k+1D
mβ>

k+1 )Mmβ
k+1,

Mm
k = Qmk +

[
Amα

>

k+1 Amβ
>

k+1

] [Mmα
k+1 0

0 Mmβ
k+1

]
·[

(Λmαk+1)−1 0

0 (Λmβk+1)−1

] [
Amαk+1

Amβk+1

]
;Mm

K = QmK . (4)

Then, Λmk is invertible and the game admits a unique closed-
loop saddle-point solution given by,[

umα∗k+1

umβ∗k+1

]
=−

[
Bmα

>

k+1 M
mα
k+1(Λ

mα
k+1)−1 0

0 Bmβ
>

k+1 M
mβ
k+1(Λ

mβ
k+1)−1

]
·[

Amαk+1

Amβk+1

]
xm∗k (5)

[
wmα∗k+1

wmβ∗k+1

]
=

1

γ2

[
Dmα>

k+1 M
mα
k+1(Λ

mα
k+1)−1 0

0 Dmβ>

k+1M
mβ
k+1(Λ

mβ
k+1)−1

]
·[

Amαk+1

Amβk+1

]
xm∗k (6)



where xm∗k state trajectory is determined from the following
with x1∗0 = x0,

xmα∗k+1 = (Λmαk+1)−1Amαk+1x
m∗
k ; xmβ∗k+1 = (Λmβk+1)−1Amβk+1x

m∗
k .

Proof: First of all, we note that, for a unique saddle-point
solution (um∗k , wm∗k ), the following should satisfy (coming
from the first-order-necessary conditions and strict convexity
of J in u and the strict concavity of J in w):

xmα∗k+1 = Amαk+1x
m∗
k +Bmαk+1u

mα∗
k+1 +Dmα

k+1w
mα∗
k+1 ,

xmβ∗k+1 = Amβk+1x
m∗
k +Bmβk+1u

mβ∗
k+1 +Dmβ

k+1w
mβ∗
k+1 ,

x1∗0 = x0.

(7)

Hm
k (u∗k, wk) ≤ Hm

k (u∗k, w
∗
k) ≤ Hm

k (uk, w
∗
k) (8)

pmk =
∂Hm

k

∂xmk
=
[
Amα

>

k+1 Amβ
>

k+1

] [pmαk+1 +Qmαk+1x
mα∗
k+1

pmβk+1 +Qmβk+1x
mβ∗
k+1

]
;

pmK = 0 ∀m ∈MK (9)

Consider the equations (7)–(9). Let us determine optimal
strategies for u and w at the final stage k = K − 1. Because
pmK = 0, ∀m ∈MK , we see that

um∗K = −Bm
>

K QmKx
m∗
K ,

wm∗K = γ−2Dm>

K QmKx
m∗
K .

Substituting it into (7) gives

ΛmαK xmα∗K = AmαK xm∗K−1; ΛmβK xmβ∗K = AmβK xm∗K−1

Because there is a unique saddle-point solution, there neces-
sarily exists a unique relation between xm∗K−1 and xmα∗K , and
also xm∗K−1 and xmβ∗K , implying all ΛK should be invertible.
Therefore,

xmα∗K = (ΛmαK )−1AmαK xm∗K−1,

xmβ∗K = (ΛmβK )−1AmβK xm∗K−1,

and

umα∗K = −BmαK Mmα
K (ΛmαK )−1AmαK xm∗K−1;

umβ∗K = −BmβK Mmβ
K (ΛmβK )−1AmβK xm∗K−1, (10)

wmα∗K = γ−2Dmα
K Mmα

K (ΛmαK )−1AmαK xm∗K−1;

wmβ∗K = γ−2Dmβ
K Mmβ

K (ΛmβK )−1AmβK xm∗K−1. (11)

Hence the theorem is verified for k = K − 1. For k = K − 2
and following similar procedure, firstly we get

um∗K−1 = −Bm
>

K−1(QmK−1x
m∗
K−1 + pmK−1),

wm∗K−1 = γ−2Dm>

K−1(QmK−1x
m∗
K−1 + pmK−1).

Using (9),

pmK−1 =
[
Amα

>

K Amβ
>

K

] [QmαK 0

0 QmβK

] [
xmα∗K

xmβ∗K

]
=
[
Amα

>

K Amβ
>

K

][Mmα
K (ΛmαK )−1 0

0 Mmβ
K (ΛmβK )−1

][
AmαK
AmβK

]
xm∗K−1

=
(
Amα

>

K Mmα
K (ΛmαK )−1AmαK +Amβ

>

K Mmβ
K (ΛmβK )−1AmβK

)
xm∗K−1

=⇒ um∗K−1 = −Bm
>

K−1M
m
K−1x

m∗
K−1;

wm∗K−1 = γ−2Dm>

K−1M
m
K−1x

m∗
K−1, (12)

where (4) was used. Putting the above expression into (7)
yields

ΛmαK−1x
mα∗
K−1 = AmαK−1x

m∗
K−2,

ΛmβK−1x
mβ∗
K−1 = AmβK−1x

m∗
K−2,

which implies all ΛK−1 are invertible for the existence of a
unique saddle-point solution, and therefore

xmα∗K−1 = (ΛmαK−1)−1AmαK−1x
m∗
K−2,

xmβ∗K−1 = (ΛmβK−1)−1AmβK−1x
m∗
K−2,

which further implies[
umα∗K−1
umβ∗K−1

]
= −

[
BmαK−1M

mα
K−1(ΛmαK−1)−1AmαK−1

BmβK−1M
mβ
K−1(ΛmβK−1)−1AmβK−1

]
xm∗K−2,

[
wmα∗K−1
wmβ∗K−1

]
=

[
γ−2Dmα

K−1M
mα
K−1(ΛmαK−1)−1AmαK−1

γ−2Dmβ
K−1M

mβ
K−1(ΛmβK−1)−1AmβK−1

]
xm∗K−2.

Thus, the theorem is verified for k = K − 2. Inductively we
achieve the desired result by also making use of the recursive
relation (4).

IV. SIMULATIONS AND DISCUSSION

A. Numerical Example
In the first set of experiments we used a simple order-

one (n = 1) system model on a dyadic tree with K = 12.
The matrices A and B were unity and Dk =

(
c
dk

)
: d > 1,

was chosen with decreasing magnitude for finer levels (this is
in line with the fact that finer resolution representations of a
signal should have lesser disturbance / noise variances). Note
that Dk := Dm

k = Dn
k ,∀k,m, n. The system model can be

visualized by Fig. 1 and described by:

xmαk+1 = xmk + umαk+1 +
( c
dk

)
wmαk+1,

xmβk+1 = xmk + umβk+1 +
( c
dk

)
wmβk+1,

x10 = 0; wmk ∼ N (0, 1); k ∈ K := {0, . . . , 11};
m ∈Mk := {1, . . . ,Mk}; c ∈ R; d > 1,

Here, (Dk)2 for each node in the tree gives the variance of
disturbance signal which is zero-mean Gaussian. The generated
plots (Fig. 2a-2b) show the state xmk and control umk signals for
the first 11 resolution level / stages, and thereby convergence
can be observed.

These plots emphasize the notion of convergence in the
proposed finite horizon system. These plots are understood in
a non-trivial way. Here, each subplot represents one complete
layer / level of the system. At level 0, there is only one (root)
node so the first subplot shows a constant line which is the
system state. At level 1, there are two children of the root
node, and subplot 2 shows that there has been slight variation
from the actual value of the root in moving to the finer level. It
is because different disturbance signal are added to the signal.
Based on this state, the control law is designed for the next
state. In Fig. 2a, you see that the control objective was to
regulate the state back to zero when it started with initial
condition x0 = 0, whereas the disturbances added at each
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Fig. 2. Two experiments for numerical example with Qk = 1. Experiment 1
(Left, 2a): Dk = (4)(10/27)k+1 and γ = 1.1726. Experiment 2 (Right, 2b):
Dk = (1/2)(20/23)k+1 and γ = 2.4271.

node corrupted the state. Therefore, in each of the sub-plot
the control signal represents the control command to be given
in order to get the state signal back to constant zero. And this
regulation is achieved substantially in the first 8 stages (in the
plots shown).

Obviously, the generation of control commands required
the fulfillment of the conditions stated in Lemma 1 for con-
cavity of J(u,w) in w. To restate, that condition is as follows,

γ2I −Dm>
k Mm

k D
m
k > 0 ∀m, k.

So for the second experiment, Fig. 2b, a minimum value
for γ > 2.4271 was required in this example to guarantee
regulation for worst-case disturbances w. This comes from the
condition stated above for maximum value of Dm

k M
m
k D

m>

k .
Since, Gaussian disturbance is not the worst-case disturbance
so it is possible to still achieve regulation (control objective)
for smaller values of γ with a lower cost. The gray region
indicates standard deviation of the disturbance signal added.
Study for exclusively Gaussian disturbances can result in better
optimal control law for Gaussian disturbances.

B. Multi-scale Temperature Control of a Building
Consider a multi-story building that has air-conditioning

units, A/Cs, and temperature sensors installed at various spots
throughout. We are interested in control law design for the A/C
units that regulates the temperature of the complete building.
There are different layers of control involved in this task.
One strategy can be to design a single control law based on
aggregate temperature reading of the whole building, and that
can be used to drive all heating units in all compartments
of all rooms on all floors in the building. Another approach
is to take different floors and provide different heating for
each respective floor based on respective sensed temperatures.
Furthermore, room temperature control can be designed for
every room separately, and so on.

One hurdle in the design is that rooms have different spaces
and layouts. Some are large halls, others are small compart-
ments, some are hallways others are restrooms; even more
so, any spatial region can have different control demands and
tolerance levels. Likewise, all heating systems (A/Cs) can have
different power usage behaviors. Besides all of this, regions
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(a) Very large Qmax.
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(b) Large Qmax.
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(c) Small Qmax.

Fig. 3. Temperature regulator example: Plots for different values of Qmax,
and γ = 1, Dk = (1/2)(20/23)k+1. Fig. 3a shows quick control
performance and faster convergence, whereas Fig. 3c shows that convergence
may not be possible in finite horizon.

that are close-by can influence each others’ temperature. If
a common workspace having many heaters and sensors is
required to have 77 Fahrenheit throughout, and each heater
tries attaining the desired temperature independently, then the
overall average temperature is affected. If a powerful heater
that covers larger area can achieve the same result with more
efficiency, then we’d prefer allotting more power to that and
less to smaller ones. Therefore, to construct an automatic
heating control law that is consistent across the layers of
heating and sensing, and that also meets control requirements
for every region collectively, the proposed control law for
multiscale state-space model offers us an efficient solution.

We make use of our system model and design a robust
H∞ control law that is not only disturbance rejecting, but
also collectively optimal and consistently conforming among
all heating and sensor systems it involves. As an example,
the system is modeled similar to the model used in previous
section. The control cost parameters, Qmk , are chosen as:

Qm[0:K] =
Qmax

15
[15 5 2 1 . . . 1] ∀m.

It means that coarser levels have a higher control cost because
powerful heaters that affect larger spatial regions are expensive
in operation. And the control cost decreases for heaters at finer
levels. Also, here it is assumed that control cost is the same
for all nodes per level. This choice of parameters is used to
illustrate the mechanism of our proposed controller.

Fig. 3a-3c show the state-trajectories across the stages for
three different choices of Qmax. It is important to note that
the control objective is to regulate the temperature set-point
deviation to 0. The initial system state is set at x0 = 1
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Fig. 5. Effective system response of temperature regulator example
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Fig. 6. Comparison of LQR and H∞ multiscale controllers in temperature
regulator example. The branching shown in the background in green and cyan
colored lines represents the real state-trajectories. Therefore, for a 8-stage
system, the number of state-trajectories are 29 = 512. The central lines, blue
and red, are the average of the state-values for each stage, and the gray region
in the back shows the bounds of state-deviations from the mean.

but we see that as the control action is performed moving
down to finer and finer levels, the system states settle near
the desired temperature set-point 0. In all these plots, there
are control and disturbance signals as in Fig. 2b that are not
shown for simplicity. State-trajectories for different values of
Qmax are shown in Fig. 4. Fig. 5a is another representation of
the state trajectories. Here, the black dots represent state values
corresponding to each node in a stage (level). So, at level 0,
there is only a single dot, then two dots at level 1, four at level
2 and so on. Next, the blue line is the effective state at each
level, obtained after curve-fitting on the obtained state values.
This plot is to show that the convergence is obtained at the
steady state. Plots for different choices of Qmax are shown in
Fig. 5b showing varying rates of convergence.

Lastly, we present a comparison of performance of our pro-
posed controller with the standard Linear-Quadratic-Regulator.
LQR is the key controller that is used massively throughout the
world. This comparison is shown in Fig. 6. The total LQR cost
difference shows that the H∞ control law that we proposed
performs better under such exogenous disturbance inputs that
are added across levels randomly in our example. We observe
a 15% reduction in total cost. Moreover, the convergence to
desired state is achieved faster for H∞ controller.

V. CONCLUSION
In this paper, we have presented an optimal robust control

strategy for a rich class of multiscale discrete systems that
attenuates uncertain exogenous disturbances. We have dis-
cussed conditions for optimality under the control objective
defined for a given disturbance attenuation level γ. We have
shown the mechanism of our controller for the example of
multi-resolution temperature regulation of a building (that has
a hierarchical structure of feedback control systems). This
synthetic example is similar to many other multi-resolution
phenomena embedded in the IoT setting. We have shown the
system response to different choices of cost parameters and
the convergence of state trajectories in steady-state. Lastly, our
controller is shown to perform better in comparison to standard
Linear-Quadratic-Regulator (LQR), especially for exogenous
unprecedented disturbance signals.
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