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Abstract. Volumetric estimation of contained soil has many potential applica-

tions in a variety of tasks such as construction, mining, excavation and land-

scaping. We propose a novel method of estimating soil volume using 3D sen-

sors that does not require a container model in advance. Our novelty is the real-

ization that estimating soil volume is a measure of accuracy in aforementioned 

tasks. We demonstrate our assistive system as series of simulated and real-

world experiments, along with a study of variation in system parameters to wit-

ness its robustness. 

1 Introduction 

Today’s growing demand of automation in large-scale construction and agricultural 

industry has seen late developments in machine perception. This has even led to high-

end sensors and precise actuators in machines, but the need of quantitative analysis of 

materials operated upon, has not been exclusively addressed. Our interest is pertinent 

to related endeavors of excavation, landscaping, mining, and canal cleaning in which 

knowing the desired and the actual amounts of materials (soil, water, and mud) may 

improve net performance. 

We contend that in robotic excavators that use 3D environment sensors, on-the-

run volumetric estimation can serve as a good measure of utilization and productivity 

for the performed excavation. In rough outdoor environments, such as construction 

sites, achieving autonomy in earthmoving and loading tasks needs highly robust and 

fail-safe equipment. The problem at hand is to get a measure of how accurate such 

executions are done in terms of quantitative analysis of soil excavated or loaded. To 

this end, we have developed an indigenous technique of estimating contained soil 

using 3D depth sensors. It is becoming prevalent that every real world robot has 3D 

sensing capability for environment interaction at its core. For that, we use high defini-

tion cameras as one-of-many customized stereo systems to generate three dimensional 

point cloud representation of the excavating container. Because of large variations of 

exposure and lighting conditions in such outdoor environments, the stereo corre-

spondence algorithm we used was semi-global block matching. After scanning, owing 

to the existing stereo reconstruction precision, we apply a simple statistical outlier 

removal filter on the point cloud. Moving on, a small module to chalk out the region 
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of interest in the 3D cloud is implemented. An empty model cloud of container (readi-

ly available after first scan) is transformed to align with scanned cloud of the contain-

er on-the-fly. This is achieved using iterative closest point (ICP) matching technique. 

Once aligned, numerical method of rasterizing the space into cells is used and a plane 

is fit for each cell. Then, individually, volume for each block is numerically calculat-

ed by finding the median Euclidean distance between each corresponding pair of 

planes. The process is repeated for each raster and volume is accumulated to get the 

total grainy material volume. 

Some key points of our approach that add to its relevance with the task of volume 

estimation need highlights. First, external model of the container (CAD drawing, 3D 

triangular mesh, etc.) is not required because our scheme incorporates generating a 

model itself, through an initial measurement prior to operation. Second, it is real-time 

and easily deployable for all 3D perception systems that may see volume estimation 

as useful information. Third, the solution is simple, low-cost and elegant – not requir-

ing any high-end hardware. And lastly its robustness; as it provides immunity to ir-

regularity in surfaces of contained material (not just soil alone) and the container’s 

form (shape and size) – as long as material surface is completely visible in scans. 

2 Related Work 

Research work on generic quantitative estimation is found to be sporadic, but in rela-

tion to this, there is considerable research on autonomous loading and excavation. 

Cannon [1], in his thesis on earthmoving with an autonomous excavator, talks about 

perception enhancements in dig execution. The focus of his work is on planning op-

timal dig of the excavator to achieve minimum cost – where cost function is deter-

mined by volume scooped, energy used and time spent for the single dig. His meth-

odology is to store the shape of terrain prior to digging and, based on bucket’s trajec-

tory of scooping, continuously integrate the swept volume. Similar to our approach, 

the digging and perception are decoupled problems for him. But, his work does not 

incorporate the alignment issues, nor is it extendable to all sorts of container setups. 

Dunbabin [2] also addresses the similar problem of determining dipper fullness in 

rope shovel excavation. He has used two approaches for it: one to use laser-based 

scanning, and the other to use motor power signals at the dipper – measuring quantity 

of excavated soil. His laser-based sensing determines the maximum height of soil in 

bucket to calculate volume and ignores the precise soil profile of the container com-

promising accuracy and portability. 

A study on laser scanning for excavation measurement [3] has talked about the 

registration (alignment) problem in excavations which later leads to discussion of the 

volume estimation problem. It has produced a solution to this estimation problem by 

using the depth difference in terrain after excavation but their problem of getting the 

ground truth i.e. the actual excavated soil volume remained unsolved. Other works by 

Stentz [4] and Hemami [5, 6] have devised methods to plan dig trajectories that max-

imize excavated soil volume. However, consideration of the accuracy in achieving the 

volume requirement in this planned scooping has not been properly dealt with, and 

they have not focused on precision of volume measurements. 



3 Methodology 

This section describes the whole process of 

estimation of contained soil step-by-step (Figure 

1). The scheme is structured with distinct sens-

ing, perception and estimation parts such that 

the overall process is configurable to work as a 

sub-system for a variety of larger systems. 

3.1 Sensing 

We used stereo camera system as our 3D sen-

sor. Our primary concern in sensing is to have a 

3D point cloud. To maximize the information 

gain and robustness to environmental deviations 

the precise choice of mechanical system design 

and vision algorithms in use deserves extreme 

importance. 

Assembly: Our application is designed for 

estimation of quantity of soil in containers 

that are in the range of 2-3 meters in dis-

tance from the 3D sensors. In this context, 

we employed a self-built low-cost stereo 

system (Figure 2). We used USB powered 

high-definition pair of webcams and con-

structed a firm housing for the pair. Both 

cameras face front-parallel with a fixed 

baseline of 10 cm. 

Calibration: We use the calibrated-camera 

stereo calibration method [7] using a set of 

chessboard images, to get both the intrinsic 

and extrinsic parameters of the cameras. 

Fig. 2. Stereo camera pair 

Fig. 3. Real bucket 2/3rd filled 

Fig. 4. Disparity image 2/3rd filled 

Fig. 1. System level diagram. 



This includes the camera reprojection ma-

trix [8], later used in 3D reconstruction.  

Matching: We use Semi-Global Block Match-

ing (SGBM) [9] as our correspondence algo-

rithm with parameters minimum disparity 0, 

number of disparities 80 and block window 

size of 9x9 pixels. This algorithm was cho-

sen on account of its scalability, real-time 

processing, and the robustness of the cost 

function for block matching it employs. Us-

ing this technique and the pre-computed 

reprojection matrix we generate the disparity map of the scene. Stereo matching 

process runs with one snapshot of current scene (Figure 3) and creates a disparity 

image having the required depth information of the whole container (Figure 4). 

Point Cloud: With the disparity image, and camera intrinsic matrix, we reproject all 

points to 3D world to get a Point Cloud (Figure 5); this is done by using Point 

Cloud Library [10] and OpenCV [8]. 

Background & Outlier Removal: After we obtain the environment’s point cloud 

(Figure 5), we subtract the unnecessary background (the region of space more than 

maximum expected distance of the container) and then apply a statistical filter to 

remove outliers from the 3D cloud. The co-ordinate system origin here is the left 

camera’s center with z-axis along the camera axis (depth). 

3.2 Container Modelling 

After getting the environment’s 3D scan, we come to the perception stage of the algo-

rithm. The foremost thing needed for volume estimation in our approach is the model 

of the container we are estimating the soil in. There are plenty of ways to accomplish 

this, including a CAD drawing available from the manufacturer of the container, or a 

database of standard containers in varying shapes and sizes. But to make our process 

independent of such initial data we make our own model of the container. 

The container model is generated only once. We employ the aforementioned 3D 

sensing technique on a stereo image pair in which our container is empty and com-

pletely visible. This will serve as a reference cloud when comparing it with the cur-

rent cloud for estimating change in volume contained. 

Once we have this model, we manually mark the four corners (Figure 6) of the 

Fig. 6. Left: Outer part of model for alignment and red marks to manually choose the container 

boundary. Right: Interest area separated from rest of the model for volume estimation. 

Fig. 5. 3D point cloud 2/3rd filled. 



container in the image. This way we divide our model into two point clouds: the out-

side of the container (used in alignment) and other, comprising the inside of the model 

for volume measurement. Manual marking is acceptable as the model is only created 

once for a particular container. 

3.3 Alignment   

Once we have the empty container model in the form of two complimentary point 

clouds, we are ready to take the new scan of the filled container. The newly acquired 

point cloud will most likely not have the container at the exact same position as the 

model, due to bucket motion during excavation. Thus, we need to align them. 

One requirement (that is practically possible) is that the container is not expected 

to have arbitrarily changed its position while filling up because for a structured ar-

rangement of the sensors mounted over the vehicle, the container is brought, more or 

less, to the same position when its volume needs to be estimated. Note that this re-

quirement does not apply to pose changes since the algorithm explained below can 

handle arbitrary changes in orientation. 

The alignment is achieved by Iterative Closest Point (ICP) matching [11, 12] be-

ing current scan as the target and the outside model as the source with which target 

points are to be aligned. Maximum iterations of 

200 are used for ICP and 0.05 meters is the 

maximum correspondence distance. RANSAC 

outlier rejection threshold was set to 1 and 

transformation epsilon to 10-8. It gives us a 3D 

transformation matrix existing between the two 

clouds by which we transform the current cloud. 

After applying the transformation on every 

point in a current point cloud, the resulting 

points are exactly aligned to the model (Figure 

7). This enables us to filter the region of interest 

from the current cloud which now overlays 

directly on the point clouds of the model. 

3.4 Volume Estimation 

Finding the volume is the final step of this process. In this, we compartmentalize both 

the model and the current clouds into two 3D grids respectively. The grid size is 

manually chosen based on a variety of parameters – density of the point cloud, the 

size and capacity of the container box, the granularity of the material (soil), and of 

course, the requirement precision and accuracy of measurement. 

Since our current and model clouds are both aligned we can directly compare the 

points in their grid elements. Inside every raster, we fit a plane in each of the two 

corresponding point cloud boxes. The plane coefficients are approximated by running 

RANSAC (RANdom SAmple Consensus) over the data [13]. With this we get the two 

plane equations. 

For missing cells i.e. holes with not enough points for plane fitting, we fill the re-

gion of space by assigning it the average plane coefficients of the nearest neighboring 

Fig. 7. Blue: Model point cloud. 

Green: Aligned current cloud. 



rasters. Next, we find the two median points of the two planes. While finding the 

height of soil in a grid cell, we use the median point of the plane instead of using the 

mean point to reduce outlier weightage. Euclidean distance between these two points 

is computed – this is the height of soil for a particular cell. The height along with the 

knowledge of the grid size in units of length are used to calculate the volume enclosed 

by the raster. This process of numerical integration is repeated over the entire grid to 

get the total aggregated volume of contained soil. 

4 Experiments in a Simulated Environment 

We have used Finroc based SimVis3D simulation tool [14, 15] to simulate the bucket 

excavator’s control environment. This environment has relevant characteristics that 

facilitate our work (Figure 8) such as soil modeling using Newton Dynamics. It also 

has the capability to simulate various kinds of sensors. 

In the simulated experiments [16], the time-of-flight camera has sensor noise 

modelled by a zero mean Gaussian distribution with a precision of 4cm; and angular 

resolution of 0.5º. The bucket bounding box dimensions are setup as 2.05m x 0.54m x 

0.6m. We run a series of experiments by varying grid sizes and soil quantity. In simu-

lation, the bucket is filled up by varying soil height from its base. The surface profile 

is given a realistic look by perturbing the height at each grid point randomly (Figure 

8). In Figure 9, current cloud is transformed to align with the model [17]. It is ready 

for grid overlay and volume estimation. Table 1 shows the experiments results. 

Table 1. Filled bucket with soil quantities 0 to 520 x 103 cm3 – grid cell size of 10cm 

Soil surface height 

from base (cm) 

Actual Volume 

(103 cm3) 

Estimated Volume 

(103 cm3) 

Error in Estimation 

(%) 

0 0.0 17.6 ∞ 

10 28.8 26.2 9.03 

20 99.1 90.8 8.32 

30 188.9 183.3 2.97 

40 294.6 285.3 3.15 

45 348.9 336.7 3.49 

50 403.1 384.4 4.65 

55 459.5 438.3 4.60 

60 520.8 498.1 4.34 

Fig. 8. Simulation snapshot of bucket 

excavator in SimVis3D. 
Fig. 9. Green and Yellow: Model point clouds 

aligned with current point cloud (Blue) 

 



In simulation results, there is an estimated volume of 17606 cm3 against 0 cm3 of 

actual volume. This is due to combination of sensor noise and misalignment errors. 

Note that this error is small as the container is of much larger size: having capacity of 

2.05 x 0.54 x 0.6 = 0.6642 m3 = 664200 cm3. From simulated experiments, we have 

achieved an accuracy of over 91% in estimating the correct volume of contained soil 

in worst scenario case. Results of experiments with varying grid size for a fixed quan-

tity of soil are shown in Table 2. 

Table 2. Varying grid size for fixed amount of soil i.e. fully filled (height of 0.6m) 

Also, it is evident that we can achieve higher precision through variation in grid 

cell size. Smaller grid sizes increase missing data per cell but by filling cells with an 

average, we get lesser mean percentage error. Note that the increase in number of 

empty cells does not mean that the missed data is increased, instead the total number 

of data points remains same, and it is just the number of points present in a particular 

cell. The actual volume of soil is calculated by fitting a plane at 0.6m height from the 

bucket base with zero sensor noise and no misalignment error and calculating the 

volume by numerical integration with least raster size from the known bucket model. 

5 Real-world Experiments 

After getting encouraging results in simulation, we conducted experiments on a real 

bucket excavator. One of the many physical arrangements we tested for our setup is 

shown in Figure 10. 

We filled the bucket with a measured quantity of soil using a smaller bucket of 

known capacity – this was our source of the volume ground truth for comparison. We 

conducted experiments at different stages during our filling of 305 liters of mud. Our 

sensing system showed great results for generating dense point clouds despite it being 

our custom made stereo pair. A complete set of data collected for all three stages is 

shown in Figure 11. The effect of varying quantity of soil is shown in Table 3. 

Table 3. Results of bucket filled up with soil of up to 305400 cm3 – grid cell size of 1cm 

Grid cell 

square size 

Empty cells / 

Total cells 

Estimated Volume 

(103 cm3) 

Actual Volume 

(103 cm3) 

Error in estimation 

(%) 

15cm 0/56 520.8 454.4 12.73% 

12cm 0/85 473.2 454.4 3.96% 

10cm 3/126 498.1 454.4 8.75% 

9cm 3/138 498.2 454.4 8.77% 

7cm 40/232 501.5 454.4 9.38% 

5cm 77/451 511.3 454.4 11.10 

3cm 1070/1156 447.1 454.4 1.67% 

Quantity of Soil in 

Bucket 

Actual Volume 

(103 cm3) 

Estimated Volume 

(103 cm3) 

Error in Estimated 

Volume (%) 

Full 305.4 307.2 0.57 

Two-thirds 215.8 220.7 2.23 

One-thirds 146.6 169.1 15.4 

Empty 0.0 27.1 ∞ 



Table 4. Grid sizes with constant soil quantity (full bucket; total data points: 76480). 

Grid cell 

square size 

Empty cell / 

Total cells 

Avg. points 

per grid cell 

Estimated Vol-

ume (103 cm3) 

Actual Volume 

(103 cm3) 

Error in esti-

mation (%) 

12cm 7/90 413.4 387.8 305.4 26.9 

9cm 27/168 244.8 391.9 305.4 28.3 

7cm 26/248 153.5 365.8 305.4 19.8 

5cm 38/473 79.8 358.0 305.4 17.2 

4cm 48/742 50.3 353.6 305.4 15.8 

3cm 145/1349 29.2 365.3 305.4 19.6 

2½cm 153/1870 20.1 352.7 305.4 15.5 

2cm 327/2968 13.0 357.5 305.4 17.1 

1½cm 762/5217 7.4 352.5 305.4 15.4 

1cm 8673/11605 4.4 307.2 305.4 0.57 

Table 4 shows the effect of variation in grid size for fully filled bucket while 

measuring its volume. These tests were performed in an outdoor setting that is similar 

to realistic commercial vehicle operations. Thus the achieved accuracy demonstrates 

the viability of our proposed solution in real construction and industrial operations. 

6 Discussion 

It is evident from above tables that there is a trade-off between the accuracy of es-

timation and fraction of empty cells. For very small grid cells we do not have enough 

points for fitting planes, hence estimation starts to over-fit. In the real-world experi-

ments, a grid cell size of ~1cm causes the error to drop significantly, but note that the 

number of cells without enough points to fit a plane increases to 74% (8673/11605). 

The remaining cells have 4.4 points each on average. Thus, we didn’t go beyond 1cm 

for estimation. Remember that the empty cells do not imply any missing data because 

the overall point cloud is the same. 

Fig. 10.  Physical arrangement of real world setup. 

Stereo pair 
Processing unit 

Soil container 



(a) Scene snapshots       (b) Disparity maps     (c) 3D point clouds 

Fig. 11 Three stages of filling mud and estimating volume. 

 

In this paper, we concentrated on the implementation and validation of a particular 

approach. For the alignment task, ICP assumes no significant variation in the contain-

er position compared to its model’s position. An extension of this work can be to use 

forward kinematics for relative positioning of the sensor and the container. 

Knowledge of the transformation of co-ordinate systems existing at the joints of ma-

chine may help in a much more accurate alignment. 

  

7 Conclusion 

In this paper we have presented a novel method of estimating the volume of con-

tained soil using stereo vision. Major advantage of this approach is the use of 3D 

point cloud as a metric for the task and solution to the registration problem in meas-

urements. Our approach is also applicable for various contained materials, and for any 

form (shape and size) of the container. Having the capability to generate its own con-

tainer model makes it easier to deploy. With our approach in simulation and real-

world bucket excavator experiments, we have illustrated high accuracy of estimation. 

This also verifies our technique’s robustness to variations in environment conditions. 
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