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Abstract—This works studies expert advice framework in a
distributed wireless network with nodes working in clusters.
Specifically, we investigate how the choice of a cluster coordinator
is influenced by the use of experts advice. We compare the
performance of the static, fixed share and variable share experts
algorithms in choosing cluster coordinator nodes. We compare
the total energy spent by the nodes in each of the clusters and
also study the variance in energy consumption within clusters.
It is found that from the perspective of energy consumption, the
static expert algorithm does better than fixed and variable share
algorithms.

Index Terms—Distributed wireless networks, experts advice,
network cluster, energy consumption.

I. INTRODUCTION

D ISTRIBUTED wireless networks is a niche area of
communications and networks that has seen tremendous

interest within the scientific community in recent years, largely
due to the advancements in electronics miniaturization and
wireless communications technology. This has made develop-
ing and deploying a large number of wireless nodes distributed
over a geographical area economically feasible and technolog-
ically viable. Applications of such systems encompass a wide
array of platforms ranging from wireless sensor networks used
to monitor volcanic and seismic activity and natural parks to
military applications for security and surveillance.

In distributed wireless networks, it is common to have
sensors or devices grouped according to their functionality or
geographical location. We can view these nodes to be, in a
sense, clustered. In this setting we focus on the scenario where
each cluster has a coordinator node or a “leader” which com-
municates with the central access point (AP) or base station
(BS). Every other node transmits data to the coordinator. Data
aggregation at the local level is important because it has been
shown that in energy constrained distributed networks it is
highly inefficient for each node to transmit data directly to
the AP [1]. Many different clustering algorithms have been
explored in the context of distributed wireless networks [2],
[3], [4], [5].

The role of the cluster coordinator is of utmost importance
in these distributed wireless networks. A cluster coordinator
performs task such as node association, authentication, and
task assignment [4]. As the cluster coordinators aggregate data
locally and send it on to the AP, it is critical that the choice
of the coordinators is such that the network performance is
not adversely affected. A key goal of these data aggregation
algorithms is to gather data in an energy efficient manner
so that network lifetime is enhanced [6]. Moreover, there is

also the possibility of certain nodes being compromised so
it is also important from a security perspective to ascertain
that the nodes chosen as the coordinators are trustworthy [7].
Appropriate choices of cluster coordinators has been shown to
reduce the communication overhead for both single-hop and
multi-hop networks [5].

Machine learning, in general, has been extensively used
in distributed wireless networks to implement more efficient
ways of dealing with classical problems such as routing,
security, clustering and data aggregation [8]. In this work we
use an on-line learning setting, experts advice, to predict the
cluster coordinators. In this setting, as discussed in [9], the
prediction algorithm has access to a number of experts. At
each iteration, based on the confidence on or weight of each
of the experts the algorithm makes a prediction. Losses are
computed based on the true nature and the prediction. The
weights on each expert is updated based on the losses incurred.
Following works [10], [11] have proposed efficient algorithms
for scenarios when the number of experts is exponentially
large. Moreover, a low complexity and optimal algorithm to
track the best expert was presented in [12].

A variation of the weight sharing algorithms presented in
[9] is postulated in [13] where the weights are shared based on
past posteriors.On the other hand the authors in [14] propose
a method, Learn-α, to learn the switching dynamics of the
expert algorithm. Moreover, the authors also show an example
of the use of this algorithm in predicting the polling time of a
network node. In later scientific literatures, many works have
applied the experts advice algorithm to communication and
wireless networks.

The work [15] look into the channel allocation problem in
wireless networks using sleeping experts. On the other hand
the authors in [16] predict the future state of the network using
a variant of of the fixed share expert setting developed in [9].
Thus, the unpredictability in communication systems, due to
the physics of the transmission channel and the randomness of
users, have the potential of using on-line learning algorithms
to enhance performance. With this in mind we look into the
problem of coordinator selection in wireless sensor networks
using the expert advice setting.

The rest of this report is organized as follows. In Section II
we describe the our model and extend it to the experts advice
setting. In Section III we present our simulation design and
discuss the results we obtain. In Section IV concludes the
report.
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II. SELECTING BEST COORDINATOR

A. Problem Setting

We consider a single cell with one access point (AP) at
the center and N nodes m1,m2, . . . ,mN randomly distributed
over a circular region (cell). A node denotes a wireless sensor
or device which is a part of the overall distributed wireless
network. We assume that all the nodes are already assigned
to a particular cluster, i.e., they belong to a geographically
or functionally similar group of nodes denoted by Ci where
i ∈ {1, 2 . . . C} and C represents the total number of clusters
in the system. In our model C is a known constant and the
number of nodes in the ith cluster are denoted by ki.

All the nodes seek to periodically send data to the AP.
However, instead of each node individually sending data to
the base station, we aggregate the data locally in each cluster
at one node which is defined as the cluster coordinator (CC).
The CC then forwards the aggregate data, along with its
transmission, to the AP.

Furthermore, we define a time period T which is known
as the frame length or an epoch. At the beginning of each
frame each node will assess its link with the AP and send a
channel quality indicator (CQI) to the AP. A fixed period of
time tc0 is allocated for this. Then a specified amount of time
tc1 is allocated to, first,select one coordinator nodes for each
cluster and, second, to send the identity of this node to all
other nodes in the cluster. The total period at the beginning of
the frame tc = tc0+ tc1 can be viewed as a control period and
no data transmission takes place in this period. In our setting
the AP determines the coordinator node for each cluster using
the expert advice framework.

An AP has access to L experts. Each expert is an algorithm
which assigns a probability distribution over all the nodes in
each cluster indicating how likely a particular node is to be a
coordinator. On receiving the advice from all the experts, the
AP will decide a coordinator for each cluster for the current
frame. The algorithms used by the experts are a design choice.
The BS treats the experts as black boxes. We experiment with
static, fixed-share and variable-share expert frameworks[9] in
order to compare performance and gauge which one is the best
for our case.

B. Experts Algorithm

We describe the expert algorithm used in this section.
• Parameters: Learning rate η > 0; For share algorithms

fix 0 ≤ α ≤ 1. Number of clusters C > 0. Number of
nodes in the i-th cluster ki.

• Initialize: Weights on each expert

ws
1,1 = . . . = ws

1,l = . . . = ws
1,L = 1/L

• Prediction: For every epoch/frame,
– All nodes send CQIs to the AP. The CQI of the j-th

node of the i-th cluster for a given epoch is given as
qij,t.

– The AP also receives C distributions from every L
experts. The prediction of the l-th expert for the i-th

cluster is given as,

pil,t; where
ki∑
j=1

pil,t(j) = 1. (1)

– For every cluster i ∈ 1, . . . , C, the coordinator node
is chosen as,

yit = argmax
j

qij,t

(
L∑

l=1

wt,l · pil,t(j)

)
. (2)

• Update Loss: After selecting the coordinator node com-
pute loss on every expert and update weights as,

∀l = 1, . . . L;wm
t,l = ws

t,l exp (−ηLl,t) . (3)

where

Ll,t =
1

L

C∑
i=1

L(pil,t, yit).

• Share Updates: Updates are shared based on one of the
three algorithms in [9] namely,

– Static expert: ∀l = 1, . . . L;ws
t+1,l = wm

t,l.
– Fixed Share: ∀l = 1, . . . L;

ws
t+1,l =(1− α)wm

t,l

+
1

L− 1

(
L∑

u=1

(αwm
t,u)− αwm

t,l

)
.

– Variable Share:∀l = 1, . . . L;

pool =

L∑
l=1

(
1− (1− α)Ll,t

)
wm

t,l

ws
t+1,l =(1− α)L(p

i
l,t,y

i
t)wm

t,l

+
1

L− 1

(
pool−

(
1− (1− α)Ll,t

)
wm

t,l

)
.

Following the updates, normalize the weights as

ws
t+1,l =

ws
t+1,l(∑L

l=1(w
s
t+1,l)

) .
C. Loss Function

We define the loss function at epoch t for expert l on the
prediction of cluster i as,

L(pil,t, yit) =
ki∑
j=1

pil,t(j)‖xi(j)− yit‖22, (4)

where xi(j) is the coordinate of the j-th node in the i-th cluster
and yit is the coordinate of the chosen coordinator node. In
fact the loss function measured the expected error in distance
predicted by each of the experts. This loss is averaged over
all the clusters for each expert at each iteration.
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III. SIMULATIONS AND RESULTS

This section briefly describes the simulation performed and
the results. In our simulation we consider the scenario where
on access point is communicating with C node clusters with
ki nodes in each. The clusters are placed over a 2D plane
randomly around the access point at the origin. One example
is shown in Fig. 1 with C = 8 and ki = 20,∀i = 1, . . . 8. We
use this setting for obtaining our results. We assume that the
nodes have been pre-clustered. We do not try to provide any
insight into the clustering. All the nodes communicate using a
2.4 GHz carrier over a 22 MHz channel (like 802.11b wireless
LAN). The simulations are performed on MATLAB. The code
is available on-line at [17].

In our setting, at the beginning of each epoch, each node
within a cluster will compute the channel loss to the AP. The
channel loss is a sum of the Friss path loss which scales
a function of distance and a random channel loss based on
the channel state. The channels is described as having 3
independent states S ∈ {0, 1, 2}, where a channel in state
0 has no additional loss, a channel in state 1 has an added
20 dB loss and a channel in state 2 has an added loss of 100
dB. At each epoch the channels are assigned randomly to the
nodes.

On receiving the channel information from the nodes at
the start of the epoch, the AP will choose a coordinator for
each of the C clusters. In order to do this the AP has access
to 3 experts. Each of the experts will provide a probability
distribution over the nodes in each of the clusters. The AP
combines these results with the channel state as described in
Section II. In our simulation we consider the experts to have
access to the noisy estimate of the position of the nodes and
the location of the AP. “Expert 1” creates a distribution based
on the distance of the node from the AP, “Expert 2” uses
the average distance of one node to every other node in the
cluster to produce the distribution whereas, “Expert 3” assigns
an uniform distribution every time.

The channels loss between the nodes in a cluster and the
coordinator is shown in the right pane of Fig. 2. Each state
corresponds to the same loss. Each node transmits 100 Bytes
of data to the coordinator. The coordinator aggregates the data
and transmits it to the AP. At the end of each epoch the energy
consumed by each node is computed.

We compare the performance of the static expert, fixed
share expert, and the variable share expert algorithms using
our simulation. We use a learning rate η = 0.1 and a share
weight α = 0.1. In Fig. 3 we show the weights assigned to the
experts in each epoch for the three setting. We see that for the
static expert setting, expert 1 is the best expert and the weight
assigned goes to 1 while the weights on the other experts fall
to 0. For the fixed-share expert, we see some degree of weight
sharing, although expert 1 still has a higher weight compared
to experts 2 and 3 but none of the weights go to 0. For the
variable share case we find a rapid fluctuation of weights. We
note that the exact behavior may vary based on the parameters
chosen but it is observed that the trend remains the same.

In Fig. 4 we plot the mean of the total energy consumed
by each node in each cluster along with the maximum energy

-100 -50 0 50 100 150

-100

-50

0

50

100

150

200

Fig. 1. Position of the node clusters in a 2D grid with the AP at (0, 0).

S

P (S)

0.1

0

0.55

1

0.35

2
S

P (S)

0.4059

0

0.594

1
10−4

2

Fig. 2. Probability distribution for the 3 channels states Left: for channel
between nodes and AP; Right: for channel between nodes and coordinator
nodes.

consumed by any node in a give cluster. Moreover, we plot
the average of the total energy with the standard deviation.
What we observe is the static expert gives a more uniformly
distributed energy consumption. This is evident as the differ-
ence between the maximum and the average is low for 7 out
of 8 clusters whereas this difference is low for 5 clusters in
the fixed share setting and for 6 clusters in the variable share
case. The same observation is made by the plot of the standard
deviation.

The result is in fact intuitive based on the nature of the
channel. The channel losses are dominated by the Friss path
loss. The nodes spend energy in overcoming this loss. This
is the reason why the static expert performs better in terms
of energy by sticking to the expert which assigns a greater
probability to the node nearest to the AP. Moreover, static
expert setting is using the best linear combination of experts,
choosing the optimal policy for selecting the coordinators,
rather than selecting a single(discrete) method. This agrees
with the results provided in [14], in which they also observed
the superiority of the static expert setting.

In a second experiment we change the way the experts
make predictions. Rather than looking at the network topology,
experts 1 and 2 now output a randomly generated distribution
over the nodes where as expert 3 uses the same uniform
distribution over all nodes. We plot the weights on the experts
versus the epoch in Fig. 5. We plot the energy consumption
results in Fig. 6. Like in the previous setting we notice that
the static expert does a better job at minimizing the energy
consumption. We have smaller variances in energy consumed
on average per cluster compared to the shared algorithms.
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Fig. 3. Weights on the experts for Left: No share update i.e., the static expert setting Middle: Fixed α share with α = 0.1 Right: Variable share with
α = 0.1. The learning rate used is η = 0.1.
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Fig. 4. Energy consumption: The figures compared the average and the maximum energy consumed per node for each cluster. The top left figure is for the
static expert setting, top right is for fixed share setting with α = 0.1, and the bottom center figure is for the variable share setting with α = 0.1. Also shown
along side is the standard deviation of the consumed power as error bars. The y-axis is in logarithmic in micro-Joules. Learning rate η = 0.1.
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Fig. 5. Weights on the experts for Left: No share update i.e., the static expert setting Middle: Fixed α share with α = 0.4 Right: Variable share with
α = 0.1. The learning rate used is η = 0.2.
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Fig. 6. Energy consumption: The figures compared the average and the maximum energy consumed per node for each cluster. The top left figure is for the
static expert setting, top right is for fixed share setting with α = 0.1, and the bottom center figure is for the variable share setting with α = 0.4. Also shown
along side is the standard deviation of the consumed power as error bars. The y-axis is in logarithmic in micro-Joules. Learning rate η = 0.2.
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IV. CONCLUSION

In this report we study the expert advice setting and
apply it to the problem of coordinator selection in wireless
networks. We study the static, fixed share and the variable
share algorithm in the wireless setting through the lens of
energy consumption. Through our experiments we find that the
static expert algorithm outperforms the fixed and the variable
share experts algorithm.
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