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Abstract—Prevalent advances in ‘Internet of Things’ (IoT) has
offered interaction of cyber-physical systems for sensing and ac-
tuation tasks over the Internet. Cloud computational capabilities
have even enhanced such cutting-edge technologies scaling up to
critical remote sensing and actuation tasks such as tele-operation,
mobile robotics and traffic regulation, promising the future of
smart living in smart cities. Internet serves as the communication
backbone for these networked systems entailing the advantages of
simplicity of use, cost-affordability, unmatched availability and
cloud power. The network and control relationship is a core
dimension in the design of networked systems and recent trends
are in developing co-design solutions to, for instance, the network
congestion control scheme and the feedback system’s control
law design. But, the Internet use for such time-critical systems
brings its devils along: packet losses, time-varying time-delays,
delay variations and unpredictability of network dynamics. Net-
work analysis are mathematically complex and a natural game-
theoretic framework underpins the whole IoT control scheme
design problem. We intend to develop a stable congestion control
mechanism in Internet-like networks involving dynamic cyber-
physical systems under cooperative game-theoretic framework.

I. INTRODUCTION

Over the course of many decades, today’s Internet strives
to comply with the demands of a broad range of applications.
Recent advances in Big Data with a growing computational
power and distributed resource usage, have led to highly com-
plicated cyber-physical systems. Geographically distributed
cloud servers encapsulate a multitude of potential for remotely
controlled networked systems, via the Internet. And to add to
all this, the possibility of smart everything under the Internet of
Things has become an increasingly pressing demand. In such
an environment, where we have a variety of different agents
interacting via complex networks, real-time physical systems
face unexplored challenges. Different agents, that can be
devices, sensors, networks, or even whole multi-agent systems,
incentivize, enact and interact with other agents, to fulfill
their objectives. Such game-theoretic framework underpins
the development of schemes in such networks, that avoid the
possibility of equilibrium reached by selfish decision-making
of all objects. Our work relates congestion control for Internet-
style networks with optimal control of real-time cyber-physical
systems, and is motivated by the well-known fact that non-
cooperative equilibrium is inefficient.

Networked control systems (NCS) have been a popular
research focus in the industry and academia. The idea be-
hind network control systems is that, many feedback control
systems share a common network for communication between

sensors, controllers, and plants. Due to various network topolo-
gies, each control system might face delays in communication.
This leads to delayed sensor output to the controller, and/or
delayed control input to the actuators. To design optimal
control law, the network effects need to be taken into account.
And especially for ‘Internet of Things’, the complexity of the
network is huge involving transfer control protocol (TCP),
queuing of packets, buffer size limitations, routing, pricing
and even packet drops.

With such considerations, our objective is to design a coop-
erative congestion control mechanism, that not only optimizes
for network utilization and efficiency, but also minimizes
control loop cost to meet system performance criterion at the
actuator-plant level; which is at stake at the ends of com-
munication channels (‘control/network co-design’). We will
illustrate the concept with the help of an example. Consider,
for instance, a teleoperation example of a doctor who has to
perform remote surgery of a patient. The control system’s
sensors, actuators and plant (the patient) is geographically
located at a different place from the controller (the doctor).
If the doctor uses the Internet to input control commands
for performing the surgery, then the congestion and packet
drop delays faced by the operation via the Internet can cause
serious damage. At the same time, a smartphone user can make
use of the internet for flying a UAV drone around for fun.
And so we realize that a common big network should have a
congestion control scheme that prioritizes end-users based on
the criticality of their applications. In this example, both the
end-users are cyber physical systems in themselves, and both
have remote controlling agents but a difference in criticality
causes asymmetric risks. Criticality is one of the many control
system variables. The control system variables are embedded
inside the control objective to be optimized by the controller.

We aim to develop congestion control scheme for Internet-
style networks of dynamic cyber-physical systems having
delays. We model a user’s utility function based on its control
objective. In standard literature on congestion control over the
internet, a time-diminishing log-like utility function is used.
We want each users’ utility to be a direct consequence of
his control objective (assuming that a user here represents a
control system). So, for a Linear Quadratic Regulator (LQR)
problem that regulates room temperature using sensor data
from the Internet, we can assume the utility function of this
end-user to be proportionate to the quadratic cost functional
it minimizes. But at the same time, it should be noted that
the LQR cost itself is depends on the delay caused by the



network, for sensor data to reach the controller. This makes
our problem a two-stage game problem in extensive form,
where the strategies of players at the network level affect
strategies of players are the controller level. This two-stage
game is solved naturally by a backward induction approach
when the players at first stage minimizes their cost which is
based on their corresponding second-stage objective functions.
We make use of the formulation developed by Alpcan et. al.
[1] for the congestion control problem, and the analysis of
Linear Quadratic Regulator (LQR) optimal control design with
delayed control input by Fridman [3].

A. Related Work

Literature is available on Networked Control Systems
(NCS) that takes the effect of network delay into account while
designing optimal control strategies. Activity in networked
systems is usually characterized, most widely, into two tasks:
the control of networks and the control over networks. Control
of networks deals with scheduling, routing, flow control, power
control and various other resource allocation problems. Objec-
tive, thereby, is to utilize the network resources efficiently and
fairly in order to provide Quality of Service (QoS) to the end-
users. Control over networks deals with control law design
given sensor and actuator dynamics while also considering
time-varying time-delays, finite capacity, and other network
effects into account [6]. Classical approaches in NCS literature
try to adapt the control design to a previously defined network.
Most researches have modeled the network delay as a random
variable focusing on delay prediction and detection problems.
They have assumed the network itself as a passive delay-
causing block in their block-level control system realization
[4][7].

Modern techniques have emerged that talk about co-design
and try to model and integrate the network in the control
system. For IP-based shared networks, such as the Internet,
there is work available in this context, such as [2]. Control
parameters to the network, such as transmission rate, packet
size and packet structure, are studied in [2], but, the task
of congestion control and design of an adaptive pricing
mechanism is not co-designed with the control system. We
intend to work on a game-theoretic congestion control scheme
in Internet-like networks involving dynamic cyber-physical
systems.

II. PROBLEM FORMULATION

A. System Overview

Consider a number of controller-plant subsystems, see Fig-
ure 1, each having the following dynamics:

ż(t) = Az(t) +Bu(t−Di); Di = Σl∈Ri
dl (1)

where, Di is the delay in control input for the i-th subsystem
and is expressed as the sum of all the delays caused at each
intermediate link l that the i-th subsystem uses from the
network. We assume that each link can be used by multiple
users at the same time given any network topology, but each
controllers corresponds to a single plant that he must control.
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Fig. 1. Depiction of a our framework showing a six-user network (possibly
internet) in-between the sensors and controllers, whereas each controller
corresponds to a single plant that he must control directly.

Due to the network dynamics, each source-destination pair
faces queueing delays (congestion). Even though each control
system can have different system matrices and state vectors,
but to keep the notation simple, we’ll not use subscripts with
the control system variables and cost.

We are interested in the design of an optimal control law
for each given plant, while also controlling congestion by
designing a pricing scheme for the network.

B. Network Model

Without restricting to a wired or a wireless network, we
adopt the same network model and pricing scheme for our
network as done by the authors of [1]. It is based on fluid
approximations. The topology is characterized by N nodes and
L links connecting the nodes. There are M users in total, and
each user is represented by a unique source-destination pair.
For our purpose, the destinations in our framework correspond
uniquely to a feedback control system. As for the sources,
our sources are sensors. Our framework can be generalized to
incorporate multiple sensors transmitting to a single destina-
tion. In that case, the only change in our proceeding analysis
would be to sum up the delays incurred by all sensors (i.e.∑

i∈Mj
Di where Mj denotes the set of users that have the

same destination node as the j-th user’s destination node).
However, we shall avoid extravagant notation usage and the
reader to refer to the network model articulated in [1].
• Flow rate at l-th link is the sum of flow rates of all

its users (Ri denotes the subset of the set of links
corresponding to the route (path) used by i-th user for
data transmission):

x̄l = Σi:l∈Ri
xi

• Buffer at each link fills up proportional to the link flow
rate, x̄l minus the link capacity Cl:

ḃl(t) = x̄l(t)− Cl; if bl(t) > 0

For simplicity we ignore boundary effects.



• The routing matrix A defines the capacity constraint
(where Al,i is 1 if i uses link l, and is 0 if not):

Ax(t)− ḃ(t) ≤ C

• Delay incurred at each link is a non-linear function of
flow:

ḋl(t) =
1

Cl
(x̄l(t)− Cl); if dl(t) > 0

• End-to-end delay incurred by i-th user (Di) is the sum
of delays at all intermediary links:

Di(t) =
∑
l∈Ri

dl(t)

This end-to-end delay is the same delay with which the
control input enters the control system ahead, see (1).

• The cost function for each user is composed of a price
that he pays for using the network (which itself is bilinear
in flow and delay) and his utility function that he wants
to maximize:

J̃i(x, t) = αiDi(t)xi − Ui(x)

where αi are pricing parameters.
The goal is to devise a congestion control and pricing

scheme by making use of variations in RTT (round-trip-
time). Utility of the users is assumed to be strictly increasing,
differentiable and strictly concave in the original paper. Our
aim here is to design a utility function based on the control
system cost that the controller will aim to optimize (locally
i.e. given it a delay), and then show it to construct a stabilized
network congestion control scheme. A simple dynamic model
of the network game is to assume that each user changes its
flow rate in proportion to change in the gradient of his incurred
cost:

ẋi = −∂J̃i(x)/∂xi

Thus, the generalied system becomes:

ẋi(t) =
∂Ui(x)

∂xi
− αiDi(t), i ∈ {1 . . .M}

ḋl(t) =
x̄l
Cl
− 1. l ∈ {1 . . . L}

(2)

where the effect of i-th user’s flow rate on delay he experiences
Di is ignored. We might need to lift this assumption due to
reasons that will become apparent later. Nonetheless, the above
framework is constructed here to conclude that the behavior
of utility as a function of flow rate will determine system’s
stability and congestion control scheme, and our proceeding
analysis will only tackle this point. Authors have developed
a pricing scheme to stabilize this system but they require the
utility function of each user to be strictly increasing and strictly
concave, or in other words,

∂Ui(x)

∂xi
should be decreasing in xi

An important assumption for such non-linear system is that
we operate and propose our results only near our equilibrium

point. This is natural to such systems, and considering the
Internet’s massiveness, it is considerably reasonable. Note that
this assumption is critical in our work when establishing the
relationship between end-to-end delay faced by user and its
flow rate, which later supports our choice of the user’s utility
function.

C. Control Cost

After having introduced the model and framework, we divert
the reader’s attention to the behavior of the controller. We
require that the controller optimizes for the Linear Quadratic
Regulator control objective. Derivation in this section is owe to
Fridman [3]. Recall that the destination nodes provide delayed
input to the controllers, who minimize a quadratic cost given
by

J =

∫ ∞
0

zT (t)Qz(t) + uT (t−Di)Ru(t−Di) dt

where, Q ≥ 0 and R > 0. Given a delay Di, the control
objective for each control system, is to minimize the above
LQR cost functional subject to the linear dynamic constraint of
(1). The utility of i-th user of the network will be proportional
to this cost as we shall discover later. Here we assume that
u(s) = 0, s ∈ [−Di, 0) and z(0) = z0, and (1) reduces to:

ż(t) = Az(t); z(0) = z0; t ∈ [0, Di),

ż(t) = Az(t) +Bu(t−Di); z(Di) = eADiz0; t ≥ Di.
(3)

Assuming v(t) = u(t−Di), the cost functional (or control
cost) can be decomposed into two parts:

J = zT0 (

∫ Di

0

eA
T tQeAtdt)z0 + JDi

where JDi
=

∫ ∞
Di

[zT (t)Qz(t) + vT (t)Rv(t)]dt.

Minimizing J subject to (3) is reduced to minimization of
JDi

for the non-delay system:

ż(t) = Az(t) +Bv(t); z(Di) = eADiz0; t ≥ Di,

which is the standard LQR problem giving the unique solution
(if (A,B) is stabilizable and (A,

√
Q) is detectable, that we’ve

assumed):
v(t) = −R−1BTPz(t)

where P ≥ 0 is solution to Riccati equation at steady state,
ATP + PA − PBR−1BTP + Q = 0 The minimal value of
J∗Di

= z(Di)Pz(Di). The optimal control cost, given delay
Di is expressed in the following form:

J∗(Di) = zT0 (

∫ Di

0

eA
T tQeAtdt)z0 + zT0 e

ATDiPeADiz0.

In Figures 2, 3 and 4, we’ve shown various forms of this
cost functional as a function of free parameter Di, the control



0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

900

1000
Optimal cost w.r.t. input delay

D
i
 / Control Input Delay (seconds)

C
os

t

Fig. 2. Optimal control cost as a function of the control input delay, for
various values of initial state vector z0.
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Fig. 3. Zoomed out version of the optimal control cost as a function of control
input delay, showing that for very high delays, it settles to a constant (this
means that for large delays the initial state vector z0 falls nearly in the null
space of the matrix exponential eADi .

input delay for an example fifth-order dynamic control system
given by:

A =


0.2 0.5 0 0 0
0 −0.5 1.6 0 0
0 0 −14.3 85.8 0
0 0 0 −33.3 100
0 0 0 0 −10

 , B =


0
0
0
0
30


R = 1, Q = diag([1, 0, 0, 0, 0])

III. MAIN RESULTS

A. User’s Utility Function

With the explained framework, we want to choose i-th
players utility to be inversely related to the control system’s

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70
Effect of Optimal Cost J* as a function of input delay

h / Control Input Delay (seconds)

C
os

t

 

 
Actual cost

Taylor approx. upto O(h2)

Fig. 4. Taylor Approximation of the optimal control cost as a function of
the control input delay variable ‘h’: J∗ = zT0 [P +Di(Q+PA+ATP ) +
D2

i
2

(AT (Q+ PA+ATP ) + (Q+ PA+ATP )A) +O(D2
i )]z0.

optimal cost. One possible choice, on which we shall base our
analysis is to take it equal to the negative of the control cost:

Ui(x) = −J∗(Di)

The form of the network dynamic equation (2) suggests that
we take interest only in the first derivative of cost w.r.t. flow:

∂J∗

∂xi
=
∂J∗

∂Di

∂Di

∂xi

However, this is a hard problem because firstly, J∗ itself
is hard to express and then optimize w.r.t. delay Di, and
secondly, the delay w.r.t. flow rate is also not simple to
characterize.

B. End-to-end Delay with-respect-to Flow Rate

Modeling the end-to-end delay with respect to flow rate is
difficult owing to the network model. Authors of [1] assume
that the gradient of delay w.r.t. flow is always zero. We can
not proceed with this consideration because otherwise our user
utility function vanishes. However, for large networks, this is
a valid assumption. Using (2), we see that i-th players delay
is related to the i-th players flow by the following:

Di(t) = (
∑
l∈Ri

1

Cl
)

∫ t

0

xi(τ)dτ +

∫ t

0

∑
l∈Ri

(
∑

j:l∈Rj

xj
Cl
− 1)dτ.

For a fluid dynamic system, the instantaneous perturbation
of flow rate by one of the users when the system was initially
at equilibrium, is an interesting phenomenon. As a valid
initial condition of the system, we assume the network is at
equilibrium. So, owing to fluid dynamics at equilibrium, we
take,

∂Di

∂xi
= −β(xi), where β(xi) ≥ 0. (4)



where, we haven’t assumed any form of the the function β.
Equation (4) means that slight increase in player i’s flow

rate, reduces its underlying end-to-end delay, only instanta-
neously. Such an argument makes sense because the fluid
dynamics work in this way: an instantaneous increase in a
senders flow rate, will jerk the buffer and more packets of
this sender will land in the buffer compared to the previous
equilibrium allocations. This will instantaneously reduce flow
rates of all users that were using the same links. The effect
will be propagated and this user will face shorter instantaneous
end-to-end delay. But later on, a new equilibrium might be
established at different flow rates. This behavior is analogous
to a water canal system having many channels and junctions
with water dynamics.

C. Optimal Control Cost with-respect-to Delay

Now, we have the following form of utility function’s
gradient:

∂Ui

∂xi
= −∂J

∗

∂xi
= −∂J

∗

∂Di

∂Di

∂xi
= β(xi)

∂J∗

∂Di

We proceed further to show that control cost J∗ w.r.t. delay
is strictly increasing. The gradient is evaluated as follows:

∂J∗

∂Di
=

∂

∂Di

(
zT0 (

∫ Di

0

eA
T tQeAtdt)z0 + zT0 e

ATDiPeADiz0

)
= zT0

(
(eA

TDiQeADi)(1)− (eA
T (0)QeA(0))(0)+∫ Di

0

∂

∂Di
(eA

T tQeAt)dt+ zT0 e
ATDi(ATP + PA)eADi

)
z0

= zT0 e
ATDi(Q+ PA+ATP )eADiz0.

D. Final Form of Utility Gradient

Because of a quadratic form having a positive definite
matrix at center, this gradient is non-negative for all values
of Di. Thus, we have,

∂Ui(x)

∂xi
= β(xi)

∂J∗(Di)

∂Di

= β(xi)z
T
0 e

ATDi (Q+ PA+ATP )︸ ︷︷ ︸
positive semi-definite

eADiz0 ≥ 0.

(5)

Equation (5) shows the gradient of utility to be non-negative.
So, we have established the i-th user’s utility function, Ui, to
be monotonically increasing with respect to its flow rate, xi.
For strict concavity of the utility, we require its gradient to
be monotonically decreasing. In other words, we require the
second-derivative of control cost to be strictly negative. It is
given by the following relation:

∂2J∗

∂D2
i

= zT0 e
ATDi

(
AT (Q+ PA+ATP )

+(Q+ PA+ATP )A
)
eADiz0.

But this can not be only positive or only negative because of
positive eigenvalues (unstable modes) of A, see for example
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Fig. 5. An example of a control system: Second derivative of its control cost
as a function of the control input delay.

Figure 5. With the current choice of utility function, this can
only be established if i-th user’s delay Di is exponentially
decreasing w.r.t. its flow rate xi, faster than the exponential
increase of control system’s cost functional, J∗(Di), w.r.t. the
same delay, Di. This is hard and plausibly impossible to be
certain of.

E. Extension One – Slightly Different Utility Function

In this extension, we propose a different choice of the utility
function. Let,

Ui(x) = γ
1

J∗(Di)

for γ > 0. This still implies that the gradient is non-negative.
However, we have control over the form of the gradient as a
function of the flow:

∂Ui(x)

∂xi
= γβ(xi)

1

[J∗]2
∂J∗

∂Di
.

The parameter γ can be adjusted to make this gradient strictly
decreasing in flow rate, and with J∗(Di) in the denominator,
the exponential increase of control cost gradient is damped.

There can be other possible choices of utility as well to
regularize it into desired form, and this can be explored in
future.

F. Extension Two – Time-Varying Input Delay

Up till now, we have assumed that the time-variation in the
end-user delay is fast enough, and the network equilibrium
is attained so rapidly that the physical control system sees
it as a constant delay of input. Works in Networked Control
Systems, along with other domains, have taken into account
the possibility of a time-varying delay and its effects on the
optimal control law design for the control cost, LQR cost in
our case. Krstic in [5] has shown that with certain conditions
on the control input delay and delay-rate, exponential stability
of closed loop control system can be achieved. A similar



approach taken by Fridman in [3], but with involved Linear
Matrix Inequalities (LMIs), has shown Lyapunov stability for
a more general setting of time-varying control input delay.
For our problem at hand, the conditions highlighted in [5] are
noteworthy:

• Delay itself be uniformly bounded from above, which
already holds for us because, dl(t) ≤ dl,max.

• Delay be strictly positive (to ensure that the state-space
of input dynamics can be defined – this obviously holds).

• Rate of delay be uniformly bounded from below i.e. it
can not decrease arbitrarily fast. This requires

ḃl(t) ≥ −Cl ∀t
=⇒ x̄l(t) ≥ 0

• Rate of delay be bounded from above by one, i.e. Ḋi(t) <
1 ∀t. For this to hold, we require:

ḃl(t) < Cl ∀t
=⇒ x̄l(t) < 2Cl

The last two conditions pose a limit on the flow rate. Both of
them can hold because we have already assumed a minimum
and a maximum for the flow rates: recall,

0 ≤ xi ≤ xi,max.

IV. DISCUSSION AND CONCLUSION

We have presented a viable control/network co-design
scheme for a networked control system. Nash equilibrium
attained while considering both the network congestion and
optimal control design problems independently, would result
in an inefficient design. By incorporating the control objective
into a game-theoretic network-congestion-control framework,
we’ve established a two-stage game and, in essence, solved it
by backward induction. This marks our notable contribution.
Further more, once the stability of the utility function is
shown with certainty, we can argue for the whole system to
be a two-stage cooperative game (extensive-form), in which
the first stage itself is an N -person non-cooperative game
(among the users of the network): non-cooperative because
any given player’s strategy i.e. its flow rate, is independent of
the strategies of other players.

For future consideration, we plan to simulate our system
using Simulink (or a comparable control system simulation
toolbox) joint with a Network Simulator (such as NS-2). To
show stability of the proposed mechanism, strict concavity
of the utility function is essential. For that, we can study
variations of the utility function in-line with the proposed one.
Or we can study bounds on the nature of the utility function,

for instance, the second derivative of control cost which we
require to be strictly negative w.r.t. delay is given as:

∂2J∗

∂D2
i

=

{
zT0 e

ATDi

(
AT (Q+ PA+ATP ) + (Q+ PA+

ATP )A
)
eADiz0.

≤

{
λmax

(
AT (Q+ PA+ATP ) + (Q+ PA+

ATP )A
)
||eADiz0||22.
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