
MINIMAX GAME-THEORETIC APPROACH TO MULTISCALE H∞ OPTIMAL FILTERING

Hamza Anwar and Quanyan Zhu

Electrical and Computer Engineering Department
New York University, Brooklyn, NY 11201, USA

ABSTRACT

Sensing in complex systems requires large-scale information ex-
change and on-the-go communications over heterogeneous net-
works and integrated processing platforms. Many networked cyber-
physical systems exhibit hierarchical infrastructures of information
flows, which naturally leads to a multi-level tree-like information
structure in which each level corresponds to a particular scale of
representation. This work focuses on the multiscale fusion of data
collected at multiple levels of the system. We propose a multiscale
state-space model to represent multi-resolution data over the hier-
archical information system and formulate a multi-stage dynamic
zero-sum game to design a multi-scale H∞ robust filter. We present
numerical experiments for one and two-dimensional signals and
provide a comparative analysis of the minimax filter with the stan-
dard Kalman filter to show the improvement in signal-to-noise ratio
(SNR).

Index Terms— Multi-resolution analysis, dynamic games, state
estimation, hierarchical systems, minimax techniques.

1. INTRODUCTION

Data processing of large-scale complex systems requires massive in-
formation exchange and communications that are often organized
in a hierarchical manner in which data collected at multiple scales
represent different resolutions. It is imperative that the fusion of
the sensed data need to be cost-effective, energy-efficient, quality-
ensuring, vulnerability-evasive, and overall robust in the process.
Hence in this work, we aim to design a multi-scale minimax filter
that allows state estimation that is robust to disturbances across mul-
tiple scales of the data collection.

To this end, we first build a multiscale state-space representation
of the multiscale data collection process. Leveraging the state-space
framework for modeling stochastic phenomenon at multiple scales in
Chou et. al. [1], we formulate the robust multiscale state estimation
problem using a zero-sum dynamic game approach. The develop-
ment of multiscale state estimation algorithms provides a spatially
dynamic approach towards fusing the multi-layer data and enables a
scalable and implementable solution for the large-scale system.

To illustrate the multiscale model, we can consider crime inci-
dent reporting as an example. Crime incidents are reported at nearest
precincts in the city. All precincts in a city have the aggregated crim-
inal activity information of the whole city. Cities within a state can
report this information at the state level. Similarly, the states of the
country can aggregate criminal activity information from cities and
report it to the federal government. This architecture can be con-
sidered as a pyramidal data structure with all precincts’ data at the
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finest level, city data at one coarser level, state data at one more
coarser level, and so on. The data at each successive level is an ag-
gregated representation of the same data, and thus data at each level
is linearly related. Moreover, when the available data is noisy, a
scheme for filtering out the unnecessary cofactors is often required.
Optimal filtering minimizes the error between estimated and actual
values across all levels while making the estimator robust to noise.
Data is fused along coarser levels and interpolated along finer levels.
This work formulates a filtering problem of this nature, where data
are collected at multiple layers of different resolutions and the gran-
ularity of the information increases as the system zooms into finer
levels.

We present a robust H∞ filter that outperforms regular Kalman
filter when the multiscale system is subject to additive noise in input
and measurements. The filter operates in the direction of coarse-to-
fine dynamics. Moreover, we extend our H∞ filter to incorporate
measurements at k-th level when estimating the state at k-th level
(in contrast to a predictor-based design that relies on one previous
step measurements). The use of game-theoreticH∞ filter is not new
in signal processing schemes [2]; however, up till now, it has not
found applications in multi-resolution information systems because
the tool of multiscale system modeling has not been widely used in
all relevant domains owing to its complex nature [3]. In our work,
we show the performance benefits of using the minimax robust H∞
filter in contrast to Kalman filter for 1-D and 2-D signals.

Multiscale modeling has been well studied in the statistics
and signal processing communities [4, 5], e.g., the development
of wavelet analysis [3] and its applications in image compression
and image restoration [6]. Among the relevant uses of multiscale
models for estimation tasks are in geoscience and remote sensing
especially when there are heterogeneous suites of sensors (infrared,
visual, microwave, etc.) [7] and in hierarchical graphical modeling
in machine learning [8]. In recent works for multi-layered systems,
transcale optimal controller and robust state-estimator for discrete-
time systems has been proposed by Zhao et. al. [9, 10]. Their
theory uses wavelets decomposition to relate signals across resolu-
tion levels. The focus of our work, being starkly different, is in the
fusion of sensor data of different resolutions as in [11]. Our work
specifically deals with the multiscale data fusion problem that arises
from the spatial hierarchical architectures of the sensors in contrast
to time-domain multiscale filtering problems.

2. ESTIMATOR FOR MULTISCALE STATE-SPACE
MODELS

Consider a dyadic tree structure of states: nodes are arranged in a
layered setting. Fig. 1 represents K + 1 levels of a latent process on
a dyadic tree. At the k-th level the (vectorized) process is denoted
by xk and its corresponding state-vector at m-th node is xmk ∈ Rn.
Thus, the multiple layers of the tree indicate different representations
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Fig. 1. Depiction of the dyadic tree structure for a multiscale linear
system

of the complete latent process x. We assume that the nodes of the
latent process at a given level are conditionally independent of each
other given an immediate coarser level. Our tree structure has the
following form of the forward dynamics (coarse-to-fine):

xmαk+1 = Amαk+1x
m
k +Bmαk+1w

mα
k+1,

xmβk+1 = Amβk+1x
m
k +Bmβk+1w

mβ
k+1,

ymk = Cmk x
m
k + vmk ,

(1)

k ∈ K := {0, . . . ,K − 1}; m ∈Mk := {1, . . . ,Mk}; x1
0 = x0,

where vmk ∈ Rp is the measurement noise with covariance E[vmk v
m>
k ] =

Rmk , and wmk ∈ Rq the disturbance at m(k)-th node, having
E[wmk w

m>
k ] = I w.l.o.g. Here, Amk represents the interpolation

matrix, i.e., the relationship between system states at coarse and
fine levels. Bmk is the input matrix for disturbance signals. Along
coarse-to-fine recursion, w signals actually represent the higher de-
tails added, but because coarse-to-fine recursion is analogous to the
multiresolution synthesis of signals, w is rather interpreted as the
disturbance signal corrupting our state trajectories x along resolu-
tion scales. For dyadic tree, the number of nodes at k-th level is
Mk = 2k. Since the coarsest level only has a single (root) node,
we assume the state initialization of x1

0 as known x0. For each m,
mα = 2m − 1 and mβ = 2m indicate its two children nodes in
the next finer level and mζ = dm

2
e is its parent node at a coarser

level. We assume that {wm}, i.e., the disturbance inm-th path along
coarse-to-fine scales, is any l2 sequence1.

Ultimately, instead of estimating system states xmk , we are in-
terested in estimating a linear combination of the system states xmk
given by a general representation zmk such as

zmk = Lmk x
m
k . (2)

1The set representing the path from wKm to the root is {wm} =

{wmK , wmζK−1, w
(mζ)ζ
K−2 , · · · , w1

0}. The sum of l2 norms of each wmk along
the path that leads to wmK from the root is bounded.

The measure of performance (objective) is given as follows:

J =

ΣKk=1Σ
Mk
m=1||zmk − ẑmk ||2Qm

k

||x0−x̂0||2
p−1
0

+ΣKk=1Σ
Mk
m=1

[
||wmαk+1||2I+||wmβk+1||2I+||vmk ||2R−m

k

],
(3)

where none of the denominator terms is exactly zero, x̂0 is an a
priori estimate of x0, Qmk ≥ 0, p−1

0 > 0, I identity, and Rmk > 0
are the weighting matrices. The optimal estimate of zmk , for a given
attenuation γ > 0, should satisfy

sup J < 1/γ.

We can rewrite the objective as a minimax problem

min
x̂m
k

max
ym
k
,wm

k
,x0
J =

1

2

K∑
k=1

Mk∑
m=1

{||xmk − x̂mk ||2Q̄m
k
− 1

γ
(||wmαk+1||2I

+||wmβk+1||
2
I + ||ymk − Cmk xmk ||2Rm−1

k

)} − 1

2γ
||x0 − x̂0||2p−1

0

(4)

subject to (1) where Q̄mk = Lm
T

k Qmk L
m
k .

Theorem 1. For noise attenuation γ > 0, anH∞ filter for xmk exists
if and only if there exists a stabilizing solution Pmk > 0 ∀k,m, to
the following coupled-pair of discrete-domain Riccati equations:

Pmαk+1 =Amαk+1P
m
k (I−γQ̄mk Pmk +Cm

T

k Rm
−1

k Cmk P
m
k )−1Amα

T

k+1

+Bmαk+1B
mαT

k+1 ,

Pmβk+1 =Amβk+1P
m
k (I−γQ̄mk Pmk +Cm

T

k Rm
−1

k Cmk P
m
k )−1Amβ

T

k+1

+Bmβk+1B
mβT

k+1 ,

(5)

where P0 = p0. The H∞ filter is given by

ẑmk = Lmk x̂
m
k , k = 1, 2, . . . ,K

where

x̂mα∗k+1 = Amαk+1x̂
m
k +Kmα

k+1(ymk − Cmk x̂m∗k ),

x̂mβ∗k+1 = Amβk+1x̂
m
k +Kmβ

k+1(ymk − Cmk x̂m∗k ),

Kmα
k+1 =Amαk+1P

m
k (I − γQ̄mk Pmk + Cm

T

k Rm
−1

k Cmk P
m
k )−1

Cm
T

k Rm
−1

k ,

Kmβ
k+1 =Amβk+1P

m
k (I − γQ̄mk Pmk + Cm

T

k Rm
−1

k Cmk P
m
k )−1

Cm
T

k Rm
−1

k .

(6)

Remark 1: The optimization problem (4) is a zero-sum game
with x̂m as the decision variable of the minimizer player, and
x0, w

m
k , y

m
k as the decision variables of the maximizer player. The

game is subject to the dynamic constraint of (1), making it a dy-
namic game. In the proof for Theorem 1 (not shown here) we argue
that the formulated problem is equivalent to a two-player zero-sum
dynamic game, solving which gives us the saddle-point equilibrium
solution in (6).

Remark 2: The proposed estimator is a predictor-based estima-
tor; i.e., it makes use of observations at stage k − 1 to estimate the
states at stage k, while not using stage k observations. This approach



can degrade the performance substantially because the size of state
vectors increases geometrically as the number of stages of the multi-
scale system increases. Kalman filter implemented in [12] implicitly
uses the current measurements. As an extension here, we now incor-
porate the observations at the present scale. For linear time-domain
systems, Green et. al. [13] have constructed the H∞ filter in gen-
eralized frameworks. However, for multiscale settings, such exten-
sions are unavailable, and thus we extend the generalized H∞ filter
by Green et. al. [13, B.3.1] done for discrete-time systems, to our
multiscale state-space setting that also builds upon our main result
of Theorem 1.

The numerator in our cost function (4) is modified for the esti-
mator based on present scale measurements by making the per-node
state-estimation error as follows:

emk = ||ẑmk|k − Lmk xmk ||2Qm
k
.

With the new cost function J , the optimization problem solution
gives the estimator design of (7). For our experiments, we have
used both the predictor-based and current-measurements-based es-
timators. If measurements at present scale are unavailable, then the
results in Theorem 1 are reduced to:

ẑmk|k = Lmk x̂
m
k|k,

x̂mk|k−1 = Amk x̂
mζ
k−1|k−1,

Pmk|k−1 = Amζk−1P
mζ
k−1|k−1A

mζ>
k−1 +Bmζk−1B

mζ>
k−1 ,

x̂mk|k = x̂mk|k−1 +Km
k (ymk − Cmk xmk|k−1),

Km
k = Pmk|k−1C

m>
k (Rmk + Cmk P

m
k|k−1C

m>
k )−1,

Pmk|k = Pmk|k−1− Pmk|k−1

[
Cm>k Lm>k

]
[R̃mk ]−1

[
Cmk
Lmk

]
Pmk|k−1,

R̃mk =

[
Rmk 0
0 −I/γ

]
+

[
Cmk
Lmk

]
Pmk|k−1

[
Cm>k Lm>k

]
.

(7)

3. NUMERICAL EXPERIMENTS

Fig. 2 shows various levels of a multiscale process on the interval
[0, 1]. The process is a step function, and each sub-interval cor-
responds to a node of an autoregressive process on a dyadic tree.
We show that as more stages are observed, the confidence interval
around state estimates (red) becomes tighter giving more precision
and they also tend to coincide with original signal (blue) showing
accuracy. We let A, B and C be identity matrices in all our experi-
ments for simplicity.

2-D signals have similar hierarchical modeling structure com-
pared to 1-D signals, see Fig. 3. The computation overload is also
not substantial because the way we model it requires more children
per node. We test our algorithm on different RGB and grayscale
images. The first step we take into account before estimation is the
construction step that takes the finest image, i.e., the actual image,
and generates its low-resolution versions step by step to yield images
at all tree levels, Fig. 4. Unlike our 1-D examples, here, we assume
that the original signal exists in the continuous real domain, i.e., as
K →∞, xK approaches the true signal.

A series of experiments have been performed with 2-D image
data. To generate a layered data of this signal at lower resolution
scales, we have averaged over a neighborhood of four pixels each
recursively in a pyramid-like structure, see Fig. 3. Other methods
such as frequency-domain representations can also be used, but they
will not affect our results. Once we have the data at various levels,
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Fig. 2. Example of a one-dimensional multiresolution signal repre-
sented at six different levels. Gray 70% confidence bounds indicate
the uncertainty in state transitions. Observations are indicated by
black dots, while the original signal is in blue. State estimates recov-
ered by proposed filter (γ = 1) from observations at all resolution
levels are indicated by red dotted line.
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Fig. 3. Hierarchical multiscale structure for 2-D signals (left) and
the cameraman image that we take as the finest resolution signal of
our multiscale signal to use in experiments (right).

we use it to perform filtering by giving different noisy and corrupted
observations to our system. In Fig. 5, we show that our method
outperforms the standard Kalman filtering approach for multiscale
models, giving higher SNR values and less block-like artifacts. Here,
the cameraman image at 256 × 256 resolution serves as the finest
resolution signal.

4. DISCUSSION AND CONCLUSION

Using the game-theoretic approach to the optimal estimation prob-
lem, we have avoided solving the smoothing and filtering problems
separately that has classically been considered in multiscale recur-
sive estimation [12, 14]. For our estimator, we have avoided the re-
verse (fine-to-coarse) dynamics by only considering natural dynam-
ics. Chou’s [12] method has used reverse dynamics as it involved
two-sweep estimation process: first filtering and then smoothing.
The reason for doing so is to allow the measurement at one node



Fig. 4. Different resolution levels of a 2-D signal constructed by
recursive averaging as shown in Fig. 3. These images after adding
noise will serve as the observations for the state-estimator to recover
original image.

Current-Estimator |  = 185.44 | Signal-to-noise ratio: 26.3 dB (HF), 19.3 dB (KF)

Fig. 5. Estimated image at finest resolution level using H∞ filter
with γ = 185.44 (left) and Kalman filter (right). High SNR for
H∞ estimate corresponds to a better image as is shown: block-like
artifacts are visible near the edges in the image on right.

to contribute towards the estimate at another node on the same reso-
lution level. In our approach, this technicality is taken care of by the
reverse Riccati recursion in (5).

In Fig. 6, we show that by using H∞ filter instead of standard
Kalman filter, a large reduction in the estimation cost of 21% is
achieved (i.e. calculated by accumulating squared differences be-
tween original and state estimates). Across all the stages, we see that
H∞ filter exhibits a higher value of signal-to-noise ratio in compar-
ison with Kalman filter.

One important feature of the multiscale filter is the scenario of
missing information at different nodes across the tree. The informa-
tion at neighboring nodes can improve the state estimate of nodes
where no information is recorded. We perform an experiment in
which observations have not been recorded for any node of stage 4.
The estimators can still give considerably good state estimates for
nodes at stage 4, with a yet higher uncertainty. This increase in es-
timation uncertainty is shown in Fig. 7. Although we have observed
a lower variance for Kalman filter, the variance converges in Fig. 7
as we move towards finer stages. Note that when the proposed H∞
filter is used, the covariance update in (5) is not the mere Lyapunov
update because of a nonzero γ. However, the mean update in (6) is
predicted based on state matrix A only.

In this paper, we have presented an optimal robust filter design
for a class of multiscale discrete domain systems that combats worst-
case additive exogenous process and sensor noise. Our filter design
gives the saddle-point solution which is the equilibrium strategy of
the minimax two-player zero-sum dynamic game. We have given the
conditions for an optimal solution both for the predictor-based esti-
mator (6) and the current-measurements-based estimator (7) for a
given disturbance attenuation level γ. Experimental results corrobo-
rate our theoretical findings, and we have shown our evaluations for
1-D and 2-D signal examples. Our work is not limited to the sce-
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Kalman and the proposed estimators (γ = 84.44).
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Fig. 7. Trend of uncertainty (covariance) in state-estimates is shown.
When there is no observation recorded at a given stage, uncertainty
in the state estimate of that stage increases (left). As the system
reaches the steady-state, the covariance is shown to decrease (right).

narios of images and one-dimensional signals, and in fact, we have
argued that for the multiscale state-space modeling framework, the
application of this work is not limited by computational or memory
constraints. Moreover, the expressiveness of this model is used in
various domains such as graphical topic modeling in machine learn-
ing [8]. Multi-resolution phenomena are widely found in numerous
IoT-related applications. And this fact makes our work useful for dif-
ferent domains. We also show the convergence of state trajectories
in steady-state and a comparative analysis with the standard Kalman
filter. Lastly, dealing with missing information and the distributed
nature of such models would be a future direction of our work.
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