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ABSTRACT 

Context based video retrieval has a wide spread application 

across different domain. As videos in databases are 

increasing in millions, timely response is the real challenge 

today. In this paper, we present a novel technique of context 

based video retrieval for large databases. In our approach, 

key frames are used to generate the feature vectors for 

context based search. We have also compared different 

context based video retrieval approaches in order to depict 

the efficiency of the state of the art approach. Different 

approaches include CBIR, CBVR, near duplication video 

retrieval and semantic video retrieval. Our experiment 

results shows that near duplication and semantic retrieval 

approaches outperforms others. Finally, we analyze future 

research directions.   

 

Index Terms— CBVR, semantics, kmeans, learning 

 

1. INTRODUCTION 

 

Efficient video retrieval was not a problem few years 

back. But as the World Wide Web multiplies into a gigantic 

data giant, video retrieval problem started emerging. There 

were other factors too that increased the need of efficient 

video retrieval. As time went, more and faster machines 

came into being, video resolutions increased to high 

definition (HD) which made this problem even more 

complex. Today, video has become a major part of many 

information such as news, sports, entertainment etc. And 

people prefer to watch them in high definition too. We can 

well imagine that YouTube has a video database of over 100 

million videos. There are others video databases too which 

also possess millions of videos. So it is very important that 

we should have a very efficient algorithm that can search us 

out relevant videos. Otherwise making this huge database is 

not wise if we do not get the video what we want in a 

acceptable time. 

 

A lot of work has been done in improving the video 

retrieval and still it’s an open problem as there are a lot to 

improve according to this modern world. In this paper, we 

present a novel approach of context based video retrieval. In 

this approach, video is being retrieved based upon the 

context present in the video. This is a general approach used 

in majority of video retrieval systems. 
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In the video retrieval approach used, we extract the 

frames from a video, use histograms to make a feature vector 

out of it. This feature vector made against an image frame is 

then combined with others to make a feature vector for the 

whole video. If we have features vectors against many 

videos, we used indexing to reduce the search time for a 

particular video's feature vector. Another novel technique is 

used to cluster the shots (few frames in video) after they 

have been annotated by the user during learning phase, 

against a keyword. This help us to efficiently retrieve the 

frames in a particular video based upon the context we are 

searching.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. RELATED WORK 

 

Before discussing different techniques of video retrieval, 

we should answer the question that:  why video retrieval is 

so important? The rapid growth of web-based videos has 

really made the video databases in millions of gigabytes. 

Now it’s impossible to search a required video while 

browsing all of them. So just like images, there should be a 

smart system of searching among all those videos provided it 

should fulfill two important aspects i.e. accuracy and time 

response. 

 

A lot of work has been done on video based retrieval but 

still this techniques is not as mature as it is in case of images 

and text searches. Most of the techniques tries to handle 

different kinds of transforms in order to increase the 

accuracy of the retrieval but taking care of different kinds of 

Query keyword: ‘night’. Result of shots found: 
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transforms really make them resource hungry and slow 

responsive. This thing multiplies many times in case of web 

videos as there are hundreds of millions of them. Normally 

the video searching algorithms are categorize into three 

classes: clip-level search, shot-level search and frame-level 

search. In clip level search, small video clip is used to 

search. A lot of work has been done on it [1][2][3]. But the 

leading work has been done by Karpenko et. Al [4]. They 

have used the technique of tiny images on videos and have 

produces sound results both in terms of accuracy and time 

response. They have highly compressed the videos in to tiny 

one but keeping the overall visual appearance as it. There 

are a lot number of features in any given video frame by 

frame. To generalize them into fewer number of features, 

they have used clustering for every video. To make the 

system more responsive, they further classify the tiny videos 

in to different classes. Experiments shows that there 

techniques performs quite well but there still be a tradeoff 

between the accuracy and the response time. 

 

In order to increase the response time, a lot of work has 

also being done on improving indexing approaches 

[5][6][7]. Kennedy et.al. approach takes initial search results 

from established video search methods (which typically are 

conservative in usage of concept detectors) and mines these 

results to discover and leverage co-occurrence patterns with 

detection results for hundreds of other concepts, thereby 

refining and re-ranking the initial video search result. After 

testing there algorithm on different datasets, they showed 

that their algorithm have improved the response time and 

accuracy up to 15 percent. Hu et,al. [8] Has present a survey 

regarding video retrieval techniques. Discussing all of them 

would not be possible here, but they focused on the 

performance analysis of different techniques with the aspects 

of video structure analysis, key frame extraction accuracy, 

scene segmentation, static key frame features, motion 

features, object features, video data mining and video 

annotations. In the end, they have also discussed the future 

directions of video retrieval. According to them though a lot 

of work has been done in video retrieval but there are still 

open challenges in Motion Feature Analysis, Hierarchical 

Analysis of videos, video in dices, fusion of multi models, 

video indexing, human-computer interface and distributed 

network video retrieval. 

 

Lastly cai et. al. Proposed a nice and efficient approach 

of video retrieval. They name it near-duplicate video 

retrieval approach. In this approach first they have extracted 

key frames and then from that key frames they have 

generated signature against each video. Then the signatures 

are indexed for fast retrieval. Experiment results shows that 

with the compact video representation and efficient 

indexing, they have achieved an acceptable query response 

time for million-scale dataset. 

 

3. CBIR VS. CBVR 

 

In this task, we first loads the image to search in the 

video. Then divide the image into 3x3 matrix. Then for each 

segmented image, we make a feature vector against it. For 

generation of feature vector, we first convert the image into 

three color channels i.e. red, green and blue. Then for each 

of the color channel separated, we calculate histograms for 

each. Then each histogram calculated is concatenated into a 

single feature vector. The total length of feature vector is 

3x256x9 which is 6912. 

 

For a video, according to the requirement it uses clip-

level search for video retrieval. First it loads a video, and 

processes only first 3 minutes of video. It takes frames one 

after every 15 seconds. Once the frame has been taken, it 

generates the feature vector against it. The procedure of 

making a feature vector is same as mentioned above for an 

image to be searched in videos. The only difference is that 

for a given video the feature vector will be of length 82944. 

 

Once we have both the feature vectors, we see the 

similarity among then frame by frame. For similarity, we 

have used Euclidean distance.  

 

ALGORITHM 

Parameters: a, image, videos, frame, VideoFeatures 

1: image  read query image. 

2: GenerateFeatureVector(image) 

1: separate RGB channels 

2: normalize the channels into 256 steps. 

3: divide the image into 9 splits. 

4: against each split generate a feature vector by 

generating histogram. 

5: combine all to get final feature vector. 

3: videos = get videos from file to search the query image. 

4: for each video do 

1: Get the uniform frames from the video. 

2: for each frame do 

      1: GenerateFeatureVector(frame) 

3: VideoFeatures ← all frames features in   a form of 

single vector. 

5: frame ← get one frame from VideoFeatures 

6: for each VideoFeatures do 

     1: EuclideanDistance (queryImageFeatureVector, 

VideoFeatures) 

2: if Euclidean Distance < 20000 

query image matched [output] 

3: else 

 frame ← next frame from VideoFeature. 

7: a ← output the video ID and the frame number matched. 

8: return a 



4. VIDEO RETRIEVAL VIS NEAR DUPLICATE 

DETECTION 

 

The goal of this task is to search a video based upon 

another video. Though at the grass root level, we are dealing 

with the frames but now there sequence is also important for 

matching. In this task, we take the video to be searched in a 

video database, then extract the frames out of it. For the 

evaluation purpose, we are taking uniform frames which is 

constant for all the videos. Then we read video by video, 

extract its frames with the same method as mentioned above. 

 

Once we have the frames, we make the feature vector 

against each image frame and then by combining we get the 

overall feature vector for the whole video. For making a 

feature vector, we used the method mentioned in task 1. 

 

Once we have the feature vectors, we take the first 

frames of loaded video from the database and compare it 

with the first frame of the query video. If it matches, we take 

the next frame of both the videos and see whether they 

match or not. If yes then again repeat the process unless or 

until the query video ends. If we have a mismatch before the 

query video ends, then it’s a mismatch video. Here the 

assumption is that the query video may be full or a subset of 

any video but should completely match a certain video. 

 

ALGORITHM 

Parameters: a, queryVideo, refVideo, frame, VideoFeatures 

1: queryVideo ← read query video. 

2: refVideo[] ← get videos from database 

3: VideoRetrieval (queryVideo, refVideo[]) 

     1: queryFrames[] ← queryVideo 

     2: for each refVideo[] do 

          1: refFrames[] ← refVideo 

          2: GenerateFeatureVector ( refFrames[] ) 

1: separate RGB channels 

 2: normalize the channels into 256 steps. 

 3: divide the image into 9 splits. 

4: against each split generate a feature vector by   

generating histogram. 

5: refFeatureVector ← Combine all to get final 

feature vector. 

3: qFeatureVector ← 

GenerateFeatureVector(queryFrames[])  

4: while 1:refFeatureVector do 

5:    while 1: qFeatureVector do 

 1: EuclideanDistance (refFeatureVector, 

qFeatureVector) 

 2: if EuclideanDistance < 20000 

 3:     increment qFeatureVector, refFeatureVector 

 4: else 

 5:      increment refFeatureVector 

 6: if qFeatureVector equal total frame length 

 7:      a ← Video matched 

7: return a; 

 

5. SEMANTIC VIDEO RETRIEVAL 

 
The goal of semantic video retrieval was to label videos 

with certain attached concepts, and query based on those 

concepts for fast searching. 

 

Our approach in this regard was to create an initial 

dataset with manually labelled shots in some videos, then 

use a clustering algorithm (e.g. K-Means [1]) for each 

concept. Once learning is complete, then we do automatic 

labelling of many more videos from the dataset and keep 

updating the learned clustering means. For any query, 

searching is fast because we just have to find concepts 

relating to query word and show all shots with maximal 

confidence for those concepts. 

 

PARAMETERS 

1:  ‘Annos’ 

(Hierarchical data structure that stores keywords, IDs, start-

frame, end-frame, and feature matrix for each shot in 

dataset) 

 Annos{vid}(sho).keywords := cell array containing all 

keywords for a shot with ID ‘sho’, from a video in the 

dataset named ‘vid’. 

 Annos{vid}(sho).vidID := global path to ‘vid’. 

 Annos{vid}(sho).start := starting frame # of shot ‘sho’ 

in video ‘vid’. 

 Annos{vid}(sho).end := ending frame # of shot ‘sho’ in 

video ‘vid’. 

 Annos{vid}(sho).featureMat := a feature matrix of size 

(n,10), where, 

o n = num_of_frames_in_shot * 

#_of_16x16_blocks_in_each_frame_of _shot 

o each row of this ‘featureMat’ has 10 DCT 

components of the corresponding block in 

corresponding frame. 

 

2: ‘keyMeans’ 

(Stores distribution parameters for all concepts) 

 keyMeans(i).word := the concept name e.g. mountain, 

etc. of ith concept. 

 keyMeans(i).means := the learned distribution means 

i.e. a matrix of size (4,10) where 4 is number of clusters 

and is 10 dimensional for 10 DCT coefficients. 

 

3: Uniform sampling parameters 

(In every 5 minutes interval of a video, take 8 uniformly 

sampled frames out of first 60 seconds, to get one shot 

in the video) 
 

 



ALGORITHM: MANUAL SEMANTIC LABELLING 

AND LEARNING (TASK 1) 

1: load last ‘Annos.mat’ and ‘keyMeans.mat’ 

2: for each video v to be manually labelled 

3:     for each shot s in v 

4:         s  sample uniformly 

5:         for each frame f in s 

6:             Annos{v}(s).featureMat  features( f ) 

7:         show(some frames f from s) 

8:         assign keywords  user input 

9:     perform K-Means clustering with 4 clusters 

a. for each keyword k 

b.     search relevant featureMat in Annos 

c.     append to make (n,10) matrix 

d.     keyMeans(k).means := learn using kmeans 

to get (4,10) mean matrix 

10: return keyMeans & Annos 

 

ALGORITHM: AUTOMATIC LABELLING (TASK 2) 

1: input video v to be labelled 

2: repeat algorithm for Task 1 to get featureMat of all 

shots s out of v 

3: learn using kmeans to get v’s own (4,10) mean matrix 

4: check similarity with mean matrices of all keywords 

5: assign closest matched keyword to all shots s 

 

ALGORITHM: QUERY PHASE (TASK 3) 

1: query q  user input 

2: search for all shots s having the input keyword q 

3: return frameID and videoID of all found shots 

 

6. EXPERIMENTS 

 

6.1 SETUP: SUMMARY OF VIDEO CORPUS 

 

The database we used was a series of videos from 

popular TV Series (‘Big Bang Theory’, ‘Merlin’ and ‘Sons 

of Anarchy’). We have tested our algorithms for 4 – 5 

videos. The dataset covers a range of types of content in 

videos, ranging from dark to bright colors, outdoor, humans, 

greenery, mountains, roads, etc.  

 

6.2 DISCUSSION ON RESULTS FROM METHOD 1  

 

For a given image, after being searched against a video, 

the result shows the frame matched for a particular video. 

 

From experiments, it is evident that the Euclidean 

distance can never be zero as there is always some 

differences. So this function uses a threshold value of 20000. 

Any frame whose difference is less than the threshold is 

declared to be similar. Note that matching is never 100 %. 

 

 
 

6.3 DISCUSSION ON RESULTS FROM METHOD 2 

 

Since our method works on the principle that we give it 

two video (one from user query and other from database),  it 

generates there feature vectors and compares those online, 

hence our output is in the form of either matched or not 

matched. 

 

So for a video not in the dataset, we gave it as a query, 

and searched for videos similar, and for one of those (in our 

search), we found a close match. The distance function we 

are using is the same as in task 1 i.e. Euclidean distance. 

 

 
 

6.4 DISCUSSION ON RESULTS FROM METHOD 3 

 

Some of the results from the query phase are shown here. 

Here, one thing to note is that as we keep increasing our 

database by automatic semantic labelling, our kmeans 

learned distributions for each concept also is updated, this 

makes our system better with time. 

 

In following results, the dataset we used was of around 8 



videos out of which 3 were initially manually marked and 5 

were automatically marked. In each video we have around 9-

12 shots with each shot of approximately 8-9 frames. So, 

dataset is good enough for learning the following list of 

eight concepts: 

 

traffic greenery indoor 

mountain night outdoor 

man woman  

 

One more thing in this regard is that we are using SAD as 

a measure of similarity between the learned distributions at 

the time of learning and classifying. And the value of SAD 

corresponds to the confidence of a particular video 

containing a particular concept. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4 COMPARISON B/W METHODS 

 

The last method of semantic labelling is fastest and the 

best method in terms of query response time. But, it has 

limitations that for a small dataset it doesn’t give very nice 

results. The other two methods we employed were good too 

but there performance is same for larger and smaller 

datasets. Also note that, our approach in method 3 of using 

kmeans clustering can be improved by training better 

classifiers. 

 

Another improvement, that can drastically change the 

performance of method 3, would be to not use uniform 

sampling but using an intensity-maximizing technique to 

gather shots in videos. One more thing that can be easily 

done to increase dataset is to incorporate multiple keywords 

for the same shot. Lastly, we do employ a confidence metric 

for sorting our videos, which shows that our approach has 

the information on which shot of certain video has how 

much concept  

 

The retrieval time for semantic labelling is around 2 

seconds, and processing one video for automatic labelling its 

shots takes around 40 seconds (video of length 45 minutes). 

This time also includes the learning time for kmeans. 

Retrieval times for the first and second approach is larger, 

and so is the duration for building of feature vector database 

quite long even if we employ 5:8 quantization (i.e. 8 bits are 

mapped to 5 bit numbers). 

 

 

7. CONCLUSIONS 

 

In the end, we have demonstrated that our method of 

semantic labelling and near duplicate detection gives nice 

Query: ‘outdoor’ 

 

 

Query: ‘woman’ 

 

 

Query: ‘man’ 

 

 



video retrieving results. The uniqueness of our approach lies 

in the fact that we train a simple classifier. Although kmeans 

has its limitations of outlier problem, etc., but because of a 

smaller and cleaner dataset our approach and proof of 

robustness of the algorithms stands out.  
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