
CONTENT BASED VIDEO RETRIEVAL

CS674/EE512: COURSE PROJECT – FINAL REPORT (MAY 2014)

Syed Muhammad Abbas

syed.abbas@lums.edu.pk

ABSTRACT

Context based video retrieval has a wide spread application

across different domain. As videos in databases are

increasing in millions, timely response is the real challenge

today. In this paper, we present a novel technique of context

based video retrieval for large databases. In our approach,

key frames are used to generate the feature vectors for

context based search. We have also compared different

context based video retrieval approaches in order to depict

the efficiency of the state of the art approach. Different

approaches include CBIR, CBVR, near duplication video

retrieval and semantic video retrieval. Our experiment

results shows that near duplication and semantic retrieval

approaches outperforms others. Finally, we analyze future

research directions.

Index Terms— CBVR, semantics, kmeans, learning

1. INTRODUCTION

Efficient video retrieval was not a problem few years

back. But as the World Wide Web multiplies into a gigantic

data giant, video retrieval problem started emerging. There

were other factors too that increased the need of efficient

video retrieval. As time went, more and faster machines

came into being, video resolutions increased to high

definition (HD) which made this problem even more

complex. Today, video has become a major part of many

information such as news, sports, entertainment etc. And

people prefer to watch them in high definition too. We can

well imagine that YouTube has a video database of over 100

million videos. There are others video databases too which

also possess millions of videos. So it is very important that

we should have a very efficient algorithm that can search us

out relevant videos. Otherwise making this huge database is

not wise if we do not get the video what we want in a

acceptable time.

A lot of work has been done in improving the video

retrieval and still it’s an open problem as there are a lot to

improve according to this modern world. In this paper, we

present a novel approach of context based video retrieval. In

this approach, video is being retrieved based upon the

context present in the video. This is a general approach used

in majority of video retrieval systems.

Hamza Anwar

14100048@lums.edu.pk

In the video retrieval approach used, we extract the

frames from a video, use histograms to make a feature vector

out of it. This feature vector made against an image frame is

then combined with others to make a feature vector for the

whole video. If we have features vectors against many

videos, we used indexing to reduce the search time for a

particular video's feature vector. Another novel technique is

used to cluster the shots (few frames in video) after they

have been annotated by the user during learning phase,

against a keyword. This help us to efficiently retrieve the

frames in a particular video based upon the context we are

searching.

2. RELATED WORK

Before discussing different techniques of video retrieval,

we should answer the question that: why video retrieval is

so important? The rapid growth of web-based videos has

really made the video databases in millions of gigabytes.

Now it’s impossible to search a required video while

browsing all of them. So just like images, there should be a

smart system of searching among all those videos provided it

should fulfill two important aspects i.e. accuracy and time

response.

A lot of work has been done on video based retrieval but

still this techniques is not as mature as it is in case of images

and text searches. Most of the techniques tries to handle

different kinds of transforms in order to increase the

accuracy of the retrieval but taking care of different kinds of

Query keyword: ‘night’. Result of shots found:

(Dataset: 3 manual & 5 automatically labelled videos)

Video ID # 2

Video ID # 5

Video ID # 6

mailto:syed.abbas@lums.edu.pk
mailto:14100048@lums.edu.pk

transforms really make them resource hungry and slow

responsive. This thing multiplies many times in case of web

videos as there are hundreds of millions of them. Normally

the video searching algorithms are categorize into three

classes: clip-level search, shot-level search and frame-level

search. In clip level search, small video clip is used to

search. A lot of work has been done on it [1][2][3]. But the

leading work has been done by Karpenko et. Al [4]. They

have used the technique of tiny images on videos and have

produces sound results both in terms of accuracy and time

response. They have highly compressed the videos in to tiny

one but keeping the overall visual appearance as it. There

are a lot number of features in any given video frame by

frame. To generalize them into fewer number of features,

they have used clustering for every video. To make the

system more responsive, they further classify the tiny videos

in to different classes. Experiments shows that there

techniques performs quite well but there still be a tradeoff

between the accuracy and the response time.

In order to increase the response time, a lot of work has

also being done on improving indexing approaches

[5][6][7]. Kennedy et.al. approach takes initial search results

from established video search methods (which typically are

conservative in usage of concept detectors) and mines these

results to discover and leverage co-occurrence patterns with

detection results for hundreds of other concepts, thereby

refining and re-ranking the initial video search result. After

testing there algorithm on different datasets, they showed

that their algorithm have improved the response time and

accuracy up to 15 percent. Hu et,al. [8] Has present a survey

regarding video retrieval techniques. Discussing all of them

would not be possible here, but they focused on the

performance analysis of different techniques with the aspects

of video structure analysis, key frame extraction accuracy,

scene segmentation, static key frame features, motion

features, object features, video data mining and video

annotations. In the end, they have also discussed the future

directions of video retrieval. According to them though a lot

of work has been done in video retrieval but there are still

open challenges in Motion Feature Analysis, Hierarchical

Analysis of videos, video in dices, fusion of multi models,

video indexing, human-computer interface and distributed

network video retrieval.

Lastly cai et. al. Proposed a nice and efficient approach

of video retrieval. They name it near-duplicate video

retrieval approach. In this approach first they have extracted

key frames and then from that key frames they have

generated signature against each video. Then the signatures

are indexed for fast retrieval. Experiment results shows that

with the compact video representation and efficient

indexing, they have achieved an acceptable query response

time for million-scale dataset.

3. CBIR VS. CBVR

In this task, we first loads the image to search in the

video. Then divide the image into 3x3 matrix. Then for each

segmented image, we make a feature vector against it. For

generation of feature vector, we first convert the image into

three color channels i.e. red, green and blue. Then for each

of the color channel separated, we calculate histograms for

each. Then each histogram calculated is concatenated into a

single feature vector. The total length of feature vector is

3x256x9 which is 6912.

For a video, according to the requirement it uses clip-

level search for video retrieval. First it loads a video, and

processes only first 3 minutes of video. It takes frames one

after every 15 seconds. Once the frame has been taken, it

generates the feature vector against it. The procedure of

making a feature vector is same as mentioned above for an

image to be searched in videos. The only difference is that

for a given video the feature vector will be of length 82944.

Once we have both the feature vectors, we see the

similarity among then frame by frame. For similarity, we

have used Euclidean distance.

ALGORITHM

Parameters: a, image, videos, frame, VideoFeatures

1: image read query image.

2: GenerateFeatureVector(image)

1: separate RGB channels

2: normalize the channels into 256 steps.

3: divide the image into 9 splits.

4: against each split generate a feature vector by

generating histogram.

5: combine all to get final feature vector.

3: videos = get videos from file to search the query image.

4: for each video do

1: Get the uniform frames from the video.

2: for each frame do

 1: GenerateFeatureVector(frame)

3: VideoFeatures ← all frames features in a form of

single vector.

5: frame ← get one frame from VideoFeatures

6: for each VideoFeatures do

 1: EuclideanDistance (queryImageFeatureVector,

VideoFeatures)

2: if Euclidean Distance < 20000

query image matched [output]

3: else

 frame ← next frame from VideoFeature.

7: a ← output the video ID and the frame number matched.

8: return a

4. VIDEO RETRIEVAL VIS NEAR DUPLICATE

DETECTION

The goal of this task is to search a video based upon

another video. Though at the grass root level, we are dealing

with the frames but now there sequence is also important for

matching. In this task, we take the video to be searched in a

video database, then extract the frames out of it. For the

evaluation purpose, we are taking uniform frames which is

constant for all the videos. Then we read video by video,

extract its frames with the same method as mentioned above.

Once we have the frames, we make the feature vector

against each image frame and then by combining we get the

overall feature vector for the whole video. For making a

feature vector, we used the method mentioned in task 1.

Once we have the feature vectors, we take the first

frames of loaded video from the database and compare it

with the first frame of the query video. If it matches, we take

the next frame of both the videos and see whether they

match or not. If yes then again repeat the process unless or

until the query video ends. If we have a mismatch before the

query video ends, then it’s a mismatch video. Here the

assumption is that the query video may be full or a subset of

any video but should completely match a certain video.

ALGORITHM

Parameters: a, queryVideo, refVideo, frame, VideoFeatures

1: queryVideo ← read query video.

2: refVideo[] ← get videos from database

3: VideoRetrieval (queryVideo, refVideo[])

 1: queryFrames[] ← queryVideo

 2: for each refVideo[] do

 1: refFrames[] ← refVideo

 2: GenerateFeatureVector (refFrames[])

1: separate RGB channels

 2: normalize the channels into 256 steps.

 3: divide the image into 9 splits.

4: against each split generate a feature vector by

generating histogram.

5: refFeatureVector ← Combine all to get final

feature vector.

3: qFeatureVector ←

GenerateFeatureVector(queryFrames[])

4: while 1:refFeatureVector do

5: while 1: qFeatureVector do

 1: EuclideanDistance (refFeatureVector,

qFeatureVector)

 2: if EuclideanDistance < 20000

 3: increment qFeatureVector, refFeatureVector

 4: else

 5: increment refFeatureVector

 6: if qFeatureVector equal total frame length

 7: a ← Video matched

7: return a;

5. SEMANTIC VIDEO RETRIEVAL

The goal of semantic video retrieval was to label videos

with certain attached concepts, and query based on those

concepts for fast searching.

Our approach in this regard was to create an initial

dataset with manually labelled shots in some videos, then

use a clustering algorithm (e.g. K-Means [1]) for each

concept. Once learning is complete, then we do automatic

labelling of many more videos from the dataset and keep

updating the learned clustering means. For any query,

searching is fast because we just have to find concepts

relating to query word and show all shots with maximal

confidence for those concepts.

PARAMETERS

1: ‘Annos’

(Hierarchical data structure that stores keywords, IDs, start-

frame, end-frame, and feature matrix for each shot in

dataset)

 Annos{vid}(sho).keywords := cell array containing all

keywords for a shot with ID ‘sho’, from a video in the

dataset named ‘vid’.

 Annos{vid}(sho).vidID := global path to ‘vid’.

 Annos{vid}(sho).start := starting frame # of shot ‘sho’

in video ‘vid’.

 Annos{vid}(sho).end := ending frame # of shot ‘sho’ in

video ‘vid’.

 Annos{vid}(sho).featureMat := a feature matrix of size

(n,10), where,

o n = num_of_frames_in_shot *

#_of_16x16_blocks_in_each_frame_of _shot

o each row of this ‘featureMat’ has 10 DCT

components of the corresponding block in

corresponding frame.

2: ‘keyMeans’

(Stores distribution parameters for all concepts)

 keyMeans(i).word := the concept name e.g. mountain,

etc. of ith concept.

 keyMeans(i).means := the learned distribution means

i.e. a matrix of size (4,10) where 4 is number of clusters

and is 10 dimensional for 10 DCT coefficients.

3: Uniform sampling parameters

(In every 5 minutes interval of a video, take 8 uniformly

sampled frames out of first 60 seconds, to get one shot

in the video)

ALGORITHM: MANUAL SEMANTIC LABELLING

AND LEARNING (TASK 1)

1: load last ‘Annos.mat’ and ‘keyMeans.mat’

2: for each video v to be manually labelled

3: for each shot s in v

4: s sample uniformly

5: for each frame f in s

6: Annos{v}(s).featureMat features(f)

7: show(some frames f from s)

8: assign keywords user input

9: perform K-Means clustering with 4 clusters

a. for each keyword k

b. search relevant featureMat in Annos

c. append to make (n,10) matrix

d. keyMeans(k).means := learn using kmeans

to get (4,10) mean matrix

10: return keyMeans & Annos

ALGORITHM: AUTOMATIC LABELLING (TASK 2)

1: input video v to be labelled

2: repeat algorithm for Task 1 to get featureMat of all

shots s out of v

3: learn using kmeans to get v’s own (4,10) mean matrix

4: check similarity with mean matrices of all keywords

5: assign closest matched keyword to all shots s

ALGORITHM: QUERY PHASE (TASK 3)

1: query q user input

2: search for all shots s having the input keyword q

3: return frameID and videoID of all found shots

6. EXPERIMENTS

6.1 SETUP: SUMMARY OF VIDEO CORPUS

The database we used was a series of videos from

popular TV Series (‘Big Bang Theory’, ‘Merlin’ and ‘Sons

of Anarchy’). We have tested our algorithms for 4 – 5

videos. The dataset covers a range of types of content in

videos, ranging from dark to bright colors, outdoor, humans,

greenery, mountains, roads, etc.

6.2 DISCUSSION ON RESULTS FROM METHOD 1

For a given image, after being searched against a video,

the result shows the frame matched for a particular video.

From experiments, it is evident that the Euclidean

distance can never be zero as there is always some

differences. So this function uses a threshold value of 20000.

Any frame whose difference is less than the threshold is

declared to be similar. Note that matching is never 100 %.

6.3 DISCUSSION ON RESULTS FROM METHOD 2

Since our method works on the principle that we give it

two video (one from user query and other from database), it

generates there feature vectors and compares those online,

hence our output is in the form of either matched or not

matched.

So for a video not in the dataset, we gave it as a query,

and searched for videos similar, and for one of those (in our

search), we found a close match. The distance function we

are using is the same as in task 1 i.e. Euclidean distance.

6.4 DISCUSSION ON RESULTS FROM METHOD 3

Some of the results from the query phase are shown here.

Here, one thing to note is that as we keep increasing our

database by automatic semantic labelling, our kmeans

learned distributions for each concept also is updated, this

makes our system better with time.

In following results, the dataset we used was of around 8

videos out of which 3 were initially manually marked and 5

were automatically marked. In each video we have around 9-

12 shots with each shot of approximately 8-9 frames. So,

dataset is good enough for learning the following list of

eight concepts:

traffic greenery indoor

mountain night outdoor

man woman

One more thing in this regard is that we are using SAD as

a measure of similarity between the learned distributions at

the time of learning and classifying. And the value of SAD

corresponds to the confidence of a particular video

containing a particular concept.

6.4 COMPARISON B/W METHODS

The last method of semantic labelling is fastest and the

best method in terms of query response time. But, it has

limitations that for a small dataset it doesn’t give very nice

results. The other two methods we employed were good too

but there performance is same for larger and smaller

datasets. Also note that, our approach in method 3 of using

kmeans clustering can be improved by training better

classifiers.

Another improvement, that can drastically change the

performance of method 3, would be to not use uniform

sampling but using an intensity-maximizing technique to

gather shots in videos. One more thing that can be easily

done to increase dataset is to incorporate multiple keywords

for the same shot. Lastly, we do employ a confidence metric

for sorting our videos, which shows that our approach has

the information on which shot of certain video has how

much concept

The retrieval time for semantic labelling is around 2

seconds, and processing one video for automatic labelling its

shots takes around 40 seconds (video of length 45 minutes).

This time also includes the learning time for kmeans.

Retrieval times for the first and second approach is larger,

and so is the duration for building of feature vector database

quite long even if we employ 5:8 quantization (i.e. 8 bits are

mapped to 5 bit numbers).

7. CONCLUSIONS

In the end, we have demonstrated that our method of

semantic labelling and near duplicate detection gives nice

Query: ‘outdoor’

Query: ‘woman’

Query: ‘man’

video retrieving results. The uniqueness of our approach lies

in the fact that we train a simple classifier. Although kmeans

has its limitations of outlier problem, etc., but because of a

smaller and cleaner dataset our approach and proof of

robustness of the algorithms stands out.

8. REFERENCES

[1] Wu, Xiao, Alexander G. Hauptmann, and Chong-Wah

Ngo. "Practical elimination of near-duplicates from web

video search." Proceedings of the 15th international

conference on Multimedia. ACM, 2007.

[2] Arman, Farshid, Arding Hsu, and Ming-Yee Chiu.

"Image processing on compressed data for large video

databases." Proceedings of the first ACM international

conference on Multimedia. ACM, 1993.

[3] Chang, Shih-Fu, et al. "A fully automated content-based

video search engine supporting spatiotemporal queries."

Circuits and Systems for Video Technology, IEEE

Transactions on 8.5 (1998): 602-615.

[4] Karpenko, Alexandre, and Parham Aarabi. "Tiny

videos: a large data set for nonparametric video

retrieval and frame classification." Pattern Analysis and

Machine Intelligence, IEEE Transactions on 33.3

(2011): 618-630.

[5] Kennedy, Lyndon S., and Shih-Fu Chang. "A reranking

approach for context-based concept fusion in video

indexing and retrieval." Proceedings of the 6th ACM

international conference on Image and video retrieval.

ACM, 2007.

[6] Irani, Michal, et al. "Efficient representations of video

sequences and their applications." Signal Processing:

Image Communication 8.4 (1996): 327-351.

[7] Miller, John David. "Video indexing protocol." U.S.

Patent No. 6,064,438. 16 May 2000.

[8] Hu, Weiming, et al. "A survey on visual content-based

video indexing and retrieval." Systems, Man, and

Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on 41.6 (2011): 797-819.

[9] Cai, Yang, et al. "Million-scale near-duplicate video

retrieval system." Proceedings of the 19th ACM

international conference on Multimedia. ACM, 2011.

