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C h a p t e r  1  

PROBLEM STATEMENT 

Landmine detection systems are crucial in demining hazardous abandoned minefields. The most 

crucial task is to ensure an optimal distance of the detector from the terrain: this is a hard problem 

because essentially a demining system has two major constraints; firstly to keep the end effector 

closest to the ground for high accuracy of detection, and secondly, to keep it far enough to prevent 

collision with the ground while scanning. Dealing with the second constraint is much more 

complex due to the inclusion of sensor noise and actuator uncertainties, which introduce a 

significant amount of variability in the motion of the arm. The bounds on the errors present an ill-

posed research problem that must be tackled with. We aim to use a low cost stereo camera pair for 

3D profiling of the terrain, and then servo the robotic sensor arm with a calculated precision when 

hovering over the terrain. 
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C h a p t e r  2  

BACKGROUND AND RELATED WORK 

2.1: BACKGROUND 

There are two types of demining: mine clearance, which is a wartime procedure performed by 

armed forces to clear a route for troops to pass, using bombproof bulldozers, carpet bombing, and 

various other techniques, and humanitarian demining, performed in peacetime to remove the 

dormant yet easily roused threat to life. Humanitarian demining (“demining”) is much more 

exacting, thorough and requires the use of less invasive techniques. Where mine clearance works 

while taking calculated risks and accepting that once in a while, a landmine may not have been 

discovered/cleared, the task is much more difficult in humanitarian demining, where the aim is 

complete clearance, because locals need to be given the guarantee that the area is free of mines; 

said area being what locals will walk over, dig for agricultural purposes, and perhaps let their 

children play on. As such, demining is a much more uphill task, requiring the very best in reliable 

demining techniques. Traditionally, demining has been performed by hand with metal detectors, 

which is the most effective, most reliable method. However, it is risky, laborious and time-

consuming. Of late, rats and dogs have also been used for the purpose, and now mechanical 

demining equipment is also deployed. 

2.1.1: Mechanical Demining Equipment 

Mechanical demining equipment is extensively used for mine clearance applications in many 

militaries around the world. The most popular form of machine used is a heavily armored 

bulldozer, which simply bulldozes the ground in its path, detonating or overturning any mine in its 

path, paving the way for military movement. However, this is extremely infeasible for 

humanitarian demining purposes, because of the very high acquisition and operational costs which 

are difficult to justify in poor countries where minefields are large and plentiful and funds are not. 
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2.1.2: Cost-Effectiveness 

Due to the nature of humanitarian demining, effective demining solutions are those that can 

thoroughly cover a given minefield. The most thorough, effective demining solution is currently 

manual labor. However, deminers are at risk during the demining operation, and the process of 

sweeping every inch of the area to be demined is extremely time-consuming, which increases the 

labor costs. The ultimate, projected goal of our project is to reach a solution that is cost-effective to 

the extent that multiple robots can be deployed, each augmenting each other and introducing 

redundancy while still matching or besting the costs of manual demining. Because demining is not 

a time-critical application, the network of robots can ultimately be set to work, and as long as the 

work is complete at the end, the time taken is not of immediate importance. 

2.1: RELATED WORK 

Marwa, a demining robot by the Laboratory for Cyber Physical Networks (CYPHYNETS), 

LUMS, is closest in vision to our project, and perhaps the only robot similar to ours in hardware 

architecture [7]. Marwa has demonstrated that it is in fact possible to develop a low-cost 

autonomous demining robot, and with several such robots it is possible to best the costs of 

employing a force of demining personnel. 
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Figure 1. Marwa in Lebanon (2011) [7] 

Bilal Talat of the same lab has also demonstrated that it was possible to track terrain of realistic 

configurations with the hardware setup that we have taken as a starting point for our project. 

However, one critical omission in Talat’s work is that only the position of the end effector has been 

demonstrated to accurately track a terrain profile in 3D. We have taken care of this omission and 

demonstrated that not only can such a setup track a terrain profile, but that we can also maintain the 

end-effector’s pose such that it keeps a mine detector sensor facing the ground as parallel to the 

ground as possible. 
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C h a p t e r  3  

DESIGN METHODOLOGY AND TOOLS 

 

Front view of the setup 
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3.1: SYSTEM LEVEL DESIGN 

 

Figure 2. Block Diagram 

The overall high level structure is illustrated in the Block Diagram (Figure 2). Our project can be 

divided into two parts main parts, the Hardware and the Software. The Hardware part consists of 

the Mechanical Setup including the motors and actuators in the Plant, potentiometers and cameras 

as the sensors, Arduino as the PID controller, H-Bridge PCBs, and a physical frame to house the 

arms and the cameras. The Software part consists of Stereo Vision block, a Motion Planner which 

has Planar Segmentation, Trajectory Planning and 3D Pose Estimation blocks. The actual setup 

looks like as shown in Figure 3. 
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Figure 3. Physical Setup 

3.1.1: Mechanical Assembly 

3.1.1.1: Degrees of Freedom  

Our hardware setup consists of a five degree of freedom robotic mine detector arm. Intitially, at the 

start of the project, we were handed over a 4 DoF arm. We added a 5th degree (wrist roll) to it. The 

arm can move horizontally about an axis, it can move vertically and can make angular movements 

about its vertical axis. Additionally, the end effector of the arm has two connected motors making 

up the wrist pitch and wrist roll movements. These essentially make up the five degrees of freedom 

for our robotic arm.  
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Figure 4. Showing physical limits of the motors 

The objective of this project was to use an existing mechanical setup available in the lab as far as 

possible. This mechanical setup consisted of a 4-DOF mechanical arm designed to be able to reach 

all points in a cylindrical area in the front of the robot. It was fabricated keeping in mind that any 

region of terrain can be scanned in multiple different ways, including raster scanning and circular 
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scanning, and the goal was to be able to scan the region of interest with few further actuations and 

reconfigurations of the arm. Further, taking the assumption that minefields are generally over flat 

or undulating terrain, noticing that it is thus reasonable to expect that by far the large majority of 

terrain to be scanned will not have very drastic and very abrupt changes, the mechanical setup was 

designed such that one prismatic joint lay parallel to the raster sweep path, which allows for the 

remainder of the degrees of freedom to cater to the irregularities in the terrain while the prismatic 

joint takes care of the raster motion.  

 

The assumption that minefields are in the vast majority of cases flat and un-rugged is a very 

reasonable one, simply because the purpose of a minefield during wartime is to ensure that enemy 

forces are not able to freely charge through an area of land and to provide resistance to hinder their 

advance. Where trees and thick vegetation is present, as in the case of forests, or jagged and rocky 

terrain as in the case of mountainous areas, the purpose of a minefield is already being met by the 

nature in most cases. It is normally only on flat land that the need arises to hinder any possible 

enemy advance which would otherwise go unobstructed, landmines are ideal candidates for the 

purposes. 
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Figure 5. 4 DOF mechanical setup initially available in 

the lab [7]. 

 

Figure 6. 5th DOF revolute joint [7]. 

As Figure 5 shows, three further degrees of freedom were incorporated so that the arm would be 

able to reach all points in a region immediately in front of the arm. However, we found that while 
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this setup was capable of reaching all points in a 3D scan-able region in front of the arm, it was not 

capable of reaching any arbitrary position within said region with an arbitrary pose, which is 

essential for the proper completion of this project. 

 

A further revolute joint was introduced at the end effector to take care of this shortcoming. The end 

result is that the new joint, when actuated in tandem with the previously available joint already 

installed on the arm, enable the end effector to align itself to a given normal. Figure 6 shows the 

added joint and the freedom gained from its addition. This brings the overall configuration of the 

robotic arm to a PRPRR robotic manipulator (P: Prismatic, R: Revolute), with a mine detection 

sensor attached as the end effector. This mechanism is able to keep the end effector carrying the 

metal detecting sensors aligned with the ground profile at all times as well as protecting the 

manipulator from steep or suddenly encountered obstacles in highly uneven terrains. 

3.1.2: Software Design 

The Software part consists of offline and online subparts. The offline part is only run once before 

servoing a particular scan region. It is used to generate the 3D point cloud of the terrain for motion 

planning. 3D point cloud generation uses stereo camera pairs to capture a Stereo Image Pair, that is 

fed into a Stereo Vision block leveraging OpenCV library to construct a 3D Point Cloud with the 

use of disparity to calculate depth. With the following underlying equation: 

Z = fB/d 

where 

Z = distance along the camera Z axis 

f = focal length (in pixels) 

B = baseline (in meters) 

d = disparity (in pixels) 

The online part is run at each successive iteration of our scan loop, the dotted portion in the Block 

Diagram. This block does the entire Motion Planning for the end-effector and consists of Planar 

Segmentation, Trajectory Planning and a 3D Pose Estimation blocks. 
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The Planar Segmentation block gets the 3D point cloud of the terrain and segments it into blocks 

for the Trajectory Planner, which in turn plans a trajectory for the end-effector to follow. It outputs 

the 3D pose (i.e. spatial, roll, pitch and yaw information) of the end-effector. A 3D Pose 

Estimation block is used to provide feedback, using the camera to detect the end-effector with the 

use of a marker, inferring the 3D Pose. Trajectory and 3D pose information of the workspace is 

transformed into the configuration space using inverse kinematics. The error between the trajectory 

to follow and the actual trajectory followed is estimated and fed to the controller to close the loop. 

 

A thing to note here is that we align the workspace (Trajectory and 3D pose) with a universal axis 

that we define to be the robot axis, to maintain consistency of our data. Refer to the Section 3.2.1.2. 

 

3.1.3: Hardware / Software Interface 

We interface our hardware (motors and potentiometers etc) with the motion planning module 

(software codes) through an Arduino Mega 2560 microcontroller as mentioned before. It has 15 

PWM outputs which are sufficient for the 5 DoF movements through H Bridges. Additionally, it 

has 16 analog inputs, 4 UARTS and a 16 MHz crystal oscillator. The Arduino controller receives 

values from the motion planning part and forwards it to the motors through 5 H Bridges for 5 

different motors to reach a desired place. It also returns the values from the sensors 

(potentiometers) to the motion planning module via serial communication. 
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Figure 7. Arduino Microcontroller 

 

Figure 8. H Bridge Design 
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3.1.4: Serial Communication 

The serial communication between the Arduino and the code is done making the use of a library 

libSerial and its extensions. The values are sent and received instantaneously without much delay 

and the system moves according to the current values being sent and received. This results in 

efficient execution of the motion physically through motors, which is initially planned in the code 

only. 

3.2: DESIGN METHODOLOGY 

3.2.1: Calibration and Alignment 

3.2.1.1: Stereo cameras 

Firstly, we need to calibrate our vision system. This is a two-step process. In this first step, we 

calibrate the individual cameras. We do this using a chessboard of size 8 x 6. OpenCV library [1] 

has built-in camera calibration sample codes; we use one of those. Chessboard being planar 

surface, with known square size (e.g. 3cm by 3cm) is an easily available candidate for this step. 

So, individually for both the cameras, we capture a series of chessboard images placed at different 

positions and orientations in the image. The algorithm detects chessboard corners up to sub-pixel 

accuracy and saves their pixel locations for each image (See Figure 9). Then, it finds a 3 x 3 

projective transform to map the corresponding points of the (8 x 6 = 48) chessboard corners 

minimizing a cost function (e.g. least squares estimation). In the end we have the camera matrix 

having the focal length, unit-of-length to pixel ratio and principal point offsets. 
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Figure 9. Camera calibration images set 

Using the camera matrices for both cameras and the same set of calibration images, we find one-to-

one mapping between the corresponding images from both cameras, and then estimate a 3D 

transformation existing between both camera centers and the frames of reference. This matrix then 

corresponds to the Essential Matrix for the stereo pair: it saves the relative geometry existing 

between the two cameras. Image pair can now be rectified (Figure 10). 
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Figure 10. Rectified image pair after stereo calibration 

The cameras we are using are simple Logitech webcams (should be identical, see Figure 11); this 

calibration step though, has been performed on other sets of stereo cameras (Logitech C900 HD 

webcams) too. 

 

Figure 11. Stereo camera pair 
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3.2.1.2: Motor / Camera reference frames 

Because of natural mismatch in the reference frames of the camera and the motors, we need a rigid 

body transform to apply on our generated terrain profile so that: 

i. Camera frame’s x-axis aligns with the horizontal prismatic joint’s axis 

ii. Camera xy-plane should be parallel to the world flat ground (i.e. z-axis of camera and 

motor frames should be parallel) 

For this we needed to apply a 3D rotation on all data processed through camera images, in getting 

depth information (Figure 12 and Figure 13 illustrate this rotation). 

K3  

Figure 12. Aligning camera xy-plane (i.e. z-axis) with 

flat ground 
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Figure 13. Aligning x-axis and motor axis 

To achieve this, our algorithm is as follows: 

i. Once we have the point cloud generation step running, we capture an image having 

flat ground as well as a wall (not necessarily perpendicular to the ground) whose 

normal vector is perpendicular to the horizontal joint axis. 

ii. We manually select these two regions in image, and generate separate point clouds. 

iii. Now we fit a plane for each of the two flat surfaces (the wall and the ground). 

iv. Using the normal vectors of the planes, we create a unique 3D rotation matrix such 

that: 

a. Ground normal vector equals camera z-axis 

b. Wall normal vector equals camera x-axis 
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v. Optionally, we also add the translation vector in our transformation matrix, and save 

this as a “transformation.yml” file. This will be later used for terrain profiling step. 

3.2.2: Vision System 

3.2.2.1: Generating point cloud 

We use OpenCV to generate the terrain profile from our stereo vision system (Figure 14). The 

algorithm employed works as follows: 

i. Capture the image of the terrain (e.g. minefield) from cameras. 

 

Figure 14. Rough Terrain 

ii. Use Semi-global Block Matching technique to find correspondence pairs in both the 

images (built-in OpenCV functions). 
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 SGBM [2] technique is a robust matching technique for stereo correspondences as 

it works quite well for outdoor environments (radiometric differences), and is also 

faster as compared to highly-accurate graph-cuts method. 

iii. This generates a disparity map of the captured scene. This map is the product of all stereo 

processing: it contains pixel-wise depth information. 

iv. Next, specify a region of interest (ROI) in your image. 

 ROI is defined, crudely, for all the area covering the image in which our degrees of 

freedom of actuators allow the end-effector to reach. 

v. Lastly, we use this map as well as the extrinsic camera parameters containing relative 

geometry of cameras (from calibration step), to create a 3D map, i.e. for each pixel in the 

disparity map we reproject it in 3D to get (x, y, z) co-ordinates of surfaces. 

 This 3D map is saved as a point cloud data file standardized in the Point Cloud 

Library (PCL) [3] file (Figure 15 and Figure 16). 

 

 

Figure 15. Scene image, its corresponding disparity map, 

and its 3D point cloud 
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Figure 16. Point cloud of scene from Figure 15 

3.2.2.2: Axes Alignment 

Once we have the point cloud, we use our initially generated transformation matrix 

(transformation.yml) to transform our points so that both reference frames get aligned. Once 

aligned, before processing further, we remove the outliers from the cloud using a built-in statistical 

outlier removal filter. 

3.2.3: Planar Segmentation 

Once we have the aligned point cloud we have to do planning of our end-effector for maneuvering 

over the terrain. Here, we apply planar segmentation strategy. In this, we segment the whole cloud 

into rasters to create a grid. In each grid cell we have set of 3D points. The grid cell size is variable 

and to achieve better accuracy we use smaller sized grids (~ 5cm by 5cm). Now, in each grid cell 

we fit a plane. The planes are fit using RANSAC (RANdom SAmple Consensus) [4]. We use PCL 
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library functions for plane fitting. For each plane we save the four parameters per grid cell, and 

store this whole discretized map for further planning. 

3.2.4: Trajectory Planning 

Once we have the planes equations, we have to plan the motion of our end-effector such that it 

remains closely parallel to each plane (in the grid), as well as at a certain safe distance to achieve 

close tracking (Figure 17). 

 

Figure 17. Scanning strategy 

Using the plane equations, we determine a discretized terrain map. As a scanning strategy, we 

employ simple raster scanning over the grid, but for that we need to find the trajectory. For each 

set-point in the terrain profile, firstly we find the exact co-ordinates in 3D of our end-effector. For 

this, we use the plane’s normal vector and along that normal just at a safe distance we determine a 

3D point (x, y, z). Secondly, we have the plane normal vector (xn, yn, zn).  

With these six work-space co-ordinates, we find the corresponding five configuration-space motor 

co-ordinates (note that our system has five DOF), i.e. the three angles for three revolute joints, and 

two distances of the prismatic joints. This step, is explained in detail in the section on Inverse 

Kinematics. With this we create a trajectory of motor co-ordinates which would later be used while 

execution of the operation. 
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3.2.5: Inverse Kinematics 

The inverse kinematics module is crucial in making sense of sensor inputs received from the arm 

and the pose of the end effector determined by the stereo vision system. Given any arbitrary pose, 

the inverse kinematics module determines the best-fit configuration of the arm that will result in a 

pose as close to the input pose as possible, given the minimum actuation amount of the motor 

actuators. This transformation from workspace to configuration space is then used to determine 

how next to actuate each of the manipulator joints so that the next target pose in the planned path 

of the end effector is achieved. 

 

Figure 18. Side profile of manipulator arm 

It is instructive to note that if the horizontal sweep prismatic joint is considered to be along one 

axis, the x-axis in our case, it becomes decoupled from the remainder of the four joints and the 

parameter along that axis is described by 𝑥 = 𝑥. The remainder of the four joints are coupled and 

determine the position of the end effector in the y-z plane. We label the manipulator’s parameters 

as illustrated in Figure 18. Then, given a workspace position vector, 𝑣 = [𝑥, 𝑦, 𝑧] and a normal 
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vector, �̅� = [𝑥𝑛, 𝑦𝑛, 𝑧𝑛] the following set of equations give the corresponding configuration space 

parameters 𝛼, 𝛽 and 𝑑𝑒𝑝𝑡ℎ: 

𝜃 =  tan−1  
𝑦𝑛

𝑧𝑛
 

𝛽 = 𝜃 +
𝜋

2
− 𝛼 

𝑦′ = (𝑑𝑒𝑝𝑡ℎ + 𝐴 + 𝐵 ∗ sin 𝛽 + 𝐷 ∗ cos 𝛽) ∗ cos 𝛼 + (𝐶 + 𝐵 ∗ cos 𝛽 +  𝐷 ∗ sin 𝛽) ∗ sin 𝛼 

𝑧′ = (𝑑𝑒𝑝𝑡ℎ + 𝐴 + 𝐵 ∗ sin 𝛽 + 𝐷 ∗ cos 𝛽) ∗ sin 𝛼 + (𝐶 + 𝐵 ∗ cos 𝛽 +  𝐷 ∗ sin 𝛽) ∗ cos 𝛼 

 

The internal workings of the inverse kinematics module are as follows. Given an input pose 

(position and end-effector normal vector in 3D Euclidean space), the algorithm searches the entire 

configuration space heuristically to find the configuration whose pose has the closest distance from 

the input pose. The search algorithm initially sweeps the entire configuration space in a coarse 

sweep which is still fine enough to ensure that the next step will guarantee recursion into regions 

that will contain the closest configuration, and then recursively searches the vicinity of the most 

promising configurations (those configurations with the least ‘distance’ from the input pose). It 

then returns the closest configuration found i.e. the one with the least heuristic distance. 

The heuristic distance, 𝑑 is a weighted combination of the Euclidean distance between the end-

effectors in search configuration and the input configuration, and the cross product of the normal 

vectors of the given input configuration and the search space configurations: 

𝑑 =  𝜆1√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2 + 𝜆2‖[𝑥𝑛, 𝑦𝑛, 𝑧𝑛] × [, sin 𝜃′ , cos 𝜃′]‖, 

Where  𝜃′ is the value of the wrist angle returned by the algorithm in the closest configuration, and 

𝜆1 and 𝜆2 are tuning parameters  

 

3.2.6: 3D Pose Estimation 

ARToolKit is based on a basic corner detection approach with a fast pose estimation algorithm 

The computer vision algorithm steps are as follows: 

i. Original Image 
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ii. Threshold Image 

iii. Connected Components 

iv. Contours 

v. Extracted marker edges and corners 

 

We modify the original step of thresholding beyond a fixed value and do dynamic thresholding in 

its stead. This is done to incorporate the various environments in which the robot may need to 

operate, it further improves the results by mitigating the light intensity variations inherently 

associated with our operation of tilting and translating the end-effector. 

 

The estimated pose is in the camera coordinate frame, we transform it to the Universal Robot Axis 

to maintain consistency with our calculations. 

3.3: TOOLS 

3.3.1: Arduino Microcontroller 

We use an Arduino microcontroller (Arduino Mega 2560) for serial communication of values to be 

given to the motors and the values that the sensors (potentiometers) return.  

 

3.3.2: PCL/OpenCV 

We use PCL and OpenCV libraries for running the stereo pair and generating point clouds at 

different stages. We do all the coding in C++. We make use of different libraries inside OpenCV 

and PCL. The RANSAC algorithms are also applied using these libraries for the plane fitting.  

 

3.3.3: ARToolKit 

ARToolKit developed by the University of Washington was used under the GNU General Public 

License [5]. The toolkit was leveraged to estimate the 3D pose of the end-effector. 
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Figure 19 on the left shows the physical end-effector with a marker placed on top, on the right is 

the software representation of the end-effector estimated pose. 

 

A sequence of steps are followed to first calibrate ARToolKit with our camera. We follow the Two 

Step Calibration approach mentioned in the ARToolKit documentation to calculate the camera 

distortion and then calibrate our camera. The errors were within one millimeter. 

 

We use the Hiro Pattern that comes with the toolkit and paste it on our end-effector for 3D pose 

estimation. The toolkit uses pattern matching techniques to locate the end-effector in the scene and 

estimate its distance from the camera center along with its translation along the other axes. The tilt, 

i.e. roll, pitch and yaw is also estimated from the tilt of the marker itself.  

 

ARToolKit is based on a basic corner detection approach with a fast pose estimation algorithm 

Please refer to section 3.2.6 for the algorithm details and section 4.2.3 for some simulation results. 

The toolkit is fast enough for real time applications, it runs within ~200 milliseconds. 

Figure 19. Showing end-effector detection 

using vision 
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3.3.4: Linux Environment 

The Linux environment we used for our senior project is the Ubuntu 12.04.4 LTS (Precise 

Pangolin, Linux kernel 3.4) OS, and there were multiple factors motivating the decision of OS 

environment. First and foremost, a Linux environment was needed because all of the other tools we 

employed throughout the course of our project supported either only Linux, or both Windows and 

Linux, in which case Linux was given the nod because of greater control over communications 

ports (USB/Serial), pre-installed and pre-configured GCC complier and environment for C++ 

programming, and fewer background processes to clog the scheduler when running our program. 

The long-term-stability (LTS) release was chosen because of its maturity as a platform, extensive 

user community and support forums, and its extended support period which ensures that timely 

fixes are released for any bugs encountered, and support is available to deal with any erratic 

behavior. 
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C h a p t e r  4  

IMPLEMENTATION RESULTS AND LIMITATIONS 

In this chapter, we will be presenting the results obtained so far during the course of this senior 

project from implementation perspective. 

4.1: HARDWARE CHARACTERISTICS 

4.1.1: Motor Characteristics/Current Ratings 

There was play in the angular motor (angular movement of the arm) which hindered efficient 

traversing of the path planned. The motors drew a lot of current. The 5 motors required 12-15 amps 

of current to run in synchronization in an efficient manner. Initially the power supply available 

couldn’t supply this much amount of current (only 3 amps max.) and hence jerky movements were 

observed. A 30 volt 10 ampere power supply was then purchased and the motors worked fine. The 

issue of starting current which was often very high was also solved by the use of the new power 

supply. 
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Figure 20. New Power Supply (30 V / 10 A) 

 

4.1.2: Sensitivity of the Motors 

Motors are sensitive to the increments in units of angular and linear position shown in Table 1. 
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Table 1. Motor Characteristics 

4.2: IMPLEMENTATION RESULTS 

4.2.1: Point Cloud Data 

For a series of terrain profiles, we managed to generate point clouds and plan trajectories of the 

end-effector over it. Images from some of those experiments with the images of variable types of 

terrains and their point clouds over which we planned trajectories and executed operation are 

shown. 

Motor 

 
Sensitivity Power Rating 

Horizontal 1.15 cm 

 

24V/3A 

Depth 0.6 cm 24V/3A 

Arm angle 7.2 degrees 24V/3A 

Wrist Pitch 1.5 degrees 5V/0.1A 

Roll 2.5 degrees 5V/0.1A 
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Figure 21. Scene image (test # 1) 

 

 

 

Figure 22. Point Clouds (test # 1) 
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Figure 23. Scene image (test # 2) 
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Figure 24. Point Clouds (test # 2) 

 

Figure 25. Scene image (test # 3) 
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Figure 26. Point Clouds (test # 3) 
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4.2.2: Response of the Motors 

The responses for 3 of the motors were plotted. 

Figure 27. Arm angle response 

Arm angle 
(degrees) 
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Figure 28. Depth motor response 

Figure 29. Horizontal motor response 
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4.2.3: 3D Pose Estimation Results 

A screenshot of our 3D Pose Estimation run is shown in Figure 30. The axis of the detected end-

effector is also visible. It lets us estimate the 3D pose using a function arGetTransMat. The result is 

a 3x4 rotation translation matrix Figure 30. The translation values are in millimeter, and the 

rotation value are normalized. One such result is as follows: 
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Figure 30. ARToolKit providing the visual feedback 

(end-effector pose) 

4.3: LIMITATIONS 

4.3.1: Motor Play 

The hardware setup has its own limitations. The play in the arm during angular movements does 

not allow the end effector to reach a desired place. Even during the horizontal movement, the arm 

keeps moving to and fro about its vertical axis and this doesn’t help in practical scenarios. The 

hardware setup needs to be modified so that the motor play is reduced or completely eliminated. In 

extreme cases, if the motor play isn’t reduced, the arm might hit obstacles/mines even if the motion 

planning module plans the trajectory perfectly. This can result in disastrous circumstances. 

4.3.2: Physical Limitations of the Arm 

Similarly, the arm has its own physical limitations.  The motors can only take the arm to values 

within specific ranges. Taking the arm to extreme values and making the arm reach the physical 

limits results in erratic movements. This is often caused because of the fact that the motors require 

excessive amounts of current for moving in the physical limits of the setup.  
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4.3.3: Limitations of the Stereo Pair 

The stereo pair sometimes fails to detect the end effector in the ROI and it results in jerky 

movements in such a way that the motion plan done previously is not followed at all. This can 

result in hitting the obstacles/mines as well. In turn, the code loses track of the end effector as well 

and can make erroneous plans and trajectories to be followed. 

 

4.3.4: Non-linearity of the Mechanical Sensors 

The sensors also return a range of values instead of a single value at a given point. This results in 

an error accumulation in the motion planning module and can cause serious failures. All the 

sensors exhibit somewhat linear behavior except the horizontal motor sensor. There is prominent 

nonlinearity in the behavior of the horizontal sensor and it results in faulty path planning by the 

motion planning module. The graphs below show the behavior of all the sensors.  

 

 

Figure 31. Depth Sensor 
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Figure 32. Horizontal Sensor 

 

Figure 33. Arm angle Sensor 
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Figure 34. Wrist angle sensor 

 

Figure 35. Wrist roll sensor 
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C h a p t e r  5  

COST ANALYSIS  

Through this project, we have demonstrated that it is possible to construct a manipulator platform 

that can accurately track a terrain profile very closely and thus maintain a metal detector at an 

optimal distance from the landform to be scanned. The cost incurred in making this testbed running 

for lab experiments is shown in the Table 2. 

Table 2. Cost Incurred 

Item Cost (USD) 

Arduino MEGA 2560 Microcontroller $24 

Mechanical Sensors 

USB Stereo Cameras 

Metal Detector 

$120 

$100 

$150 

Power Supply (30 V / 10 A) $280 

Steel frame assembly $250 

Motor Drives and Power Electronics $300 

Total $1224 
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C h a p t e r  6  

CONCLUSION AND FUTURE RECOMMENDATIONS 

6.1: SENSOR FUSION 

Sensor fusion is one task that needs to be done. We need to fuse the data coming from the two 

types of the sensors (stereo pair and potentiometers). Both make us informed about the current 

position of the end effector. Due to the nonlinearity of the horizontal sensors, it can return 

erroneous values. Field deployed mine detector arm will face bright sunlight which can result in 

malfunctioning of the stereo pair. Thus, sensor fusion can result in accurate description of the 

current position of the end effector in most of the situations. It can also allow us to rely totally on 

any one of the sensors depending upon the type of the environment.  

6.2: LIVE VISUAL FEEDBACK FOR OBSTACLE AVOIDANCE 

Obstacle avoidance on runtime will also be something for the future work. Currently, a motion 

plan for the arm is made offline and is executed on runtime as it is. We need to incorporate live 

visual / sensory feedback to avoid any dynamic obstacles even during the execution of the code. 

The motion planning module needs to run online for this purpose. The stereo pair can be made to 

take images of the terrain after specific intervals of time during the execution to make the motion 

planning module able to make an informed plan. The plan can be altered on runtime as well and 

the arm can circumvent any obstacles in its path to reach the desired location. 
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