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Abstract—Silt accumulation and sedimentation in canal
beds leads to deterioration of watercourses over time. Every
year a forced closure of the canals in the Indus basin is
inevitable for canal cleaning, entailing a very large scale and
costly operation. Silt removal precision is prone to inefficiencies
due to subjective decision making in the cleaning process. In
this paper, we lay out a theoretical framework to map the semi-
structured (emptied) canal bed terrains with an Unmanned
Aerial Vehicle (UAV) system for quantitative inspection of
deposited silt. The study employs Gaussian process regression
on sampled points to determine a continuous distribution of
silt surface, thereby, predicting the volume of silt on canal
bed. Our theoretical analysis builds upon certain mathematical
bounds on the variance of estimated volume, while explicitly
considering localization error and sensor noise. Essentially,
we setup a framework for studying how tolerable are the
process and measurement uncertainties, while achieving a
desired accuracy in silt profile and corresponding volume. We
demonstrate the regression results in simulations as well as
lab-scaled-model (LMS151 laser scanner) with different sets
of parameters. Volume estimation is verified practically and
mathematical performance limits are proposed in established
aerial canal inspection system.

I. INTRODUCTION

Inspecting man-made structures or rough outdoor ter-
rains for physical defects, deterioration, usability and safety,
involves human inspectors to do safety-critical, expensive
and time-consuming engineering tasks. Automating these, is
a hot topic and has paved way for research developments in
aerial, water and ground robotics [9][13][11]. Robotic plat-
forms that can create fast, accurate and detailed 3D models
with fused imagery, for inspections are in the making. All
this has led to high-end reliable sensors and precise actua-
tors. However, the need of quantitative analysis of material
surfaces inspected along with a theoretical study for max-
imizing inspection performance, has not been exclusively
addressed. Our interest in inspecting and mapping surfaces
focuses on maximizing volumetric estimation accuracy of
granular media in outdoor terrains for problems like canal
cleaning, landscaping, mining, and excavation.

Recently, a lot of work in inspecting safety, productivity
and health in infrastructures and industrial facilities has been
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done using aerial and marine robots. Sa et al. [20] have pro-
posed control and perception algorithms for pole detection in
high frame-rates of a pole inspection UAV system. A similar
work by Burri et al. [4] is done on the implementation of a
flying robot to inspect industrial plant boiler systems. They
have concentrated on robust control strategies under real-
time constraints for boiler inspection. Some researchers [15]
have developed a Micro-Aerial Vehicle (MAV) assistance
system to inspect large naval vessels. Moreover, there is
work available on building flight navigation in unstructured
environments [2][3]. Others have managed inspection of the
environment by physical interaction of MAVs [5][8]. Most
of these works address implementation schemes and not
undertake analysis of accuracy limits of inferred surfaces.

The civil engineering community has also employed
robotic solutions to inspect infrastructure for faults. A group
from KAIST [10], has talked about an inspection robot
system that attaches itself to a structure and measures the
structural displacement in 6-DOF. For bridge inspection,
Murphy et al. [14], have made use of Unmanned Marine
Vehicles (UMV). They have also developed a UAV-UMV
system for littoral environments [18][13] in military appli-
cations. Note that, a common factor in these works is the
deployment aspect of such field robots. These works use
robotic platforms in structural inspection attending issues of
obstacle avoidance, controller design and pose estimation.

In the context of unstructured terrain mapping, we are
currently not concerned with navigation. In most works
related to outdoor terrains both the aspects are covered
together. Due to uneven roughness, navigation and obstacle
avoidance become hard problems. For rough terrains, ap-
proximating surface maps to planes has been found useful
[11][21]. The task of surface estimation reduces to finding a
collection of planar surfaces. Although this is an advantage
when implementing such systems, such studies don’t address
the rich theoretical analysis that can tell the accuracy limits
of estimates. Most importantly, the end objectives of map-
ping in such applications is acceptable navigation, and not to
find the ground truth of encountered terrains. Most relevant
to our current work is research by groups from Carnegie
Mellon University [7] and University of Freiburg [12].
Handsell et al. [7] present a kernel-based learning approach
to estimate continuous surfaces over rough terrain to employ
a better control in navigation and obstacle avoidance.



Fig. 1. Bank deterioration (left) and siltation (right) in irrigation canals.

This prediction [7] has led to upper and lower bounds
on the continuous estimated terrain surface. Lang et al.
[12] use Gaussian Process regression with non-stationary
kernel for accurate terrain modeling of local discontinuity.
Their work is further improved and extended later [16].
The key difference in our work and the mentioned works is
our explicit incorporation of probabilistic models of robot’s
localization and sensor noise in our framework.

The motivation for our work comes from a desire to
map the large irrigation canal network in the Indus basin
for studying siltation. Water supply to the agricultural base
in Pakistan’s Indus river basin is through a vast network
of irrigation canals that run more than 50,000 km in length.
Most of the canals have mud banks and beds which undergo
deterioration over time due to accumulation of silt and
sediment transported by the rivers. See Fig. 1 for some
situations. A forced closure of the canals is inevitable for
canal cleaning, yearly, entailing a large scale and costly
operation. The extent and precision of silt removal is prone
to inefficiencies due to subjective decision making in the
process, shortage of time and lack of verification. We aim
to develop a semi-autonomous robotic profiling system to
increase the efficiency of this process. We propose to develop
a 3D perception system, which will be deployed on board
an aerial robot to assist the human operator in surveying
and cleaning the canal effectively during the annual canal
closures. The current manual system decides on cleaning
based on measurements taken every 1000 feet. It looks for
at least 6 inch silt depth at these data points. Proposed system
envisages efficient cost effective cleaning, reduced water
discharge variability, and enhanced agricultural productivity.
While a team of roboticists in our respective groups is
working on various implementation aspects of the project
(algorithms, control, post-processing of acquired data), this
paper aims to investigate the achievable performance limits
of the proposed aerial canal inspection system in theory.

Our survey shows that there are two distinct areas
relating to the problem in hand. On one side, there is work
in structural inspection suited for precisely defined environ-
ments and, on the other, is work on mapping rough uneven
surfaces. In our interest, canals offer a semi-structured envi-
ronment which neither provides a geometric uniformity (like
bridges and buildings), nor a relaxation in representation
(like fields and forests). Although there’s work on river
exploration [9] and other similar tasks, the key point of our
work is a probabilistic analysis of how inspection of accu-
mulated silt can improve net canal cleaning performance.

In the past, we have done work on the task of volume es-
timation of soil by visual inspection algorithms [1]. The goal
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Fig. 2. Side view of a silted canal bed being profiled by a flying robot.

was to develop a standalone system that measures quantities
of any granular material inside a container whose model we
acquire separately. We developed a methodology to estimate
soil quantities in a bucket excavator, using a stereo vision
system. Our approach was to make dense 3D point cloud
of the contained material and compare it with an empty
container model. Planes were fit over the soil surface using
RANdom SAmple Consensus (RANSAC) algorithm, and the
difference between the two surfaces was accumulated to
give total material volume. Note that, our goal in this paper
is not to devise a new algorithm in place of our previous
work [1], but we aim to determine theoretical bounds on our
estimates for canal cleaning application. Moreover, this work
incorporates sensor mobility and associated errors, while in
previous work the sensor is assumed to be static.

In this paper, we have derived mathematical relationships
relating the positioning and sensing uncertainty of robotic
inspection vehicles with estimation of the uneven surface
profiles and their corresponding enclosed volumes. We setup
the canal inspection problem in a basic one-dimensional
setting and discuss the sources of uncertainty in robot’s
localization and sensing. We then regress the scanned sur-
face points into a Gaussian process which gives a mean
silt surface surrounded by a confidence interval. Volume
encapsulated by this surface is determined by comparing
it with previously scanned surface. The mean surface and
the confidence interval lead to expressions of scalar mean
volume and its variance. An analysis of these expressions
that shows how tolerable are the localization and sensor
uncertainties, for achieving desired accuracy in profiling
and corresponding volume estimate. In the end, synthetic
lab-scaled experimentation to verify feasibility is presented,
whose accurate results strengthen our position in deploying
our proposed framework on real large-scale grounds.

II. PROBLEM SETUP

Consider a canal that has accumulated silt on its surface,
and a flying robot is moving along the dried channel,
scanning it from above (See Fig. 2). We assume that the
canal is dried up and their is no pooling of water with
the silted canal bed completely exposed. We’ve simplified
the scanning problem to a single dimension. The major
argument for it being the canal structure which is similar
to that of a road. So, we can’t measure depth along the
channel length by taking scans from single point in space,
on the contrary, the width of canal is such that the 3D sensor
can scan across it in a single scan, see cross-sectional canal
view in Fig. 3. Robot is moving along the canal and since
surface fitting is independent along orthogonal axes, so the
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Fig. 3. Cross-sectional view of a silted canal bed profiled by a flying
robot.
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problem reduces to single dimension. In principle, the meth-
ods discussed in this paper can be generalized to profile full
2D canal surface to assess bank deterioration. The mounted
sensor, owing to robot’s localization error, has uncertain
position and orientation throughout the operation. Secondly,
the sensor also exhibits a noise in its measurements.

The robot’s pose vector, x = [p h θ]>, consists of its
position along canal’s axis, it’s height from global reference
height and angle tilt in the sensor facing downward. All
three variables are independent and distributed normally,
and likewise, the range sensor returns are also normally
distributed. The 2D point on silt surface scanned for each
measurement is (x, y). So, we have the following relations,

p ∼ N (p̂, σ2
p), h ∼ N (0, σ2

h), θ ∼ N (0, σ2
θ), r ∼ N (r̂, σ2

r).

x = p+ r sin θ, y = r cos θ − h.

The distribution for the random variables x and y can be
approximated by a gaussian because of its similar density
function shape, as shown in Fig. 4. Hence, we can algorith-
mically, identify the exact values of variances in x and y.
However, for this paper, we will approximate σ2

x ≈ σ2
p and

σ2
y ≈ σ2

r . A practical choice of parameters verifies such an
approximation, see Fig. 4 (20.141 ≈ 20 and 1.985 ≈ 0.2).

x ∼ N (p̂, σ2
x) ≈ N (p̂, σ2

p) y ∼ N (r̂, σ2
y) ≈ N (r̂, σ2

r).

A. Estimating the silt surface

With these sources of uncertainty, an algorithm measures
the volume of the silt accumulated on the canal bed. Our
goal is to determine theoretical limits on the achievable
accuracy when estimating silt volume. But first a surface
representation, f(x), from scanned points {(xi, yi)}Ni=1,
y∗ = f(x∗) is needed. A nice representation must have
nearby points that are correlated. Beyond a certain resolution
details of the surface become unnecessary. Set of scanned
points act as landmarks to fit a regression model which gives
a surface enforcing stronger correlation between nearby and
weaker between faraway points, respecting smoothness and
handling ease. Our choice of a good candidate for such

representation is a Gaussian process, f(x), which is defined
by a mean (µ(x)) and covariance functions (k(xi, xj)).

B. Estimating volume of silt

In determining mean silt volume and corresponding
variance, an expression for integrating the gaussian random
process is required. Recall that the mean-square integral of a
random process f(x) over the interval [−W,W ] is a random
variable, YX , defined as the limiting sum given by,

YX =

∫ W

−W
f(x)dx = lim

n→∞∆k→0

n−1∑
k=0

f(xk)∆k.

A sufficient condition for mean-square
integral, YX to exist is that the double integral,∫W
−W
∫W
−W Rf (x1, x2)dx1dx2, exists. For our case Σf ,

the covariance matrix, exists and it directly relates to Rf ,
the autocorrelation function, which implies that YX will
exist. Denote area under the silt’s surface as A = YX .
From now on, we will use the terms area and volume
interchangeably. We will consider the silt to be defined
within [−W,W ] which basically are ends of the canal in
robot’s view. Determining area’s mean µA and variance σ2

A:

µA = E[

∫
f(x)dx] =

∫
E[f(x)]dx =

∫ W

−W
µfdx,

σ2
A = E[YX1

YX2
] =

∫ W

−W

∫ W

−W
Σf (x1, x2)dx1dx2.

III. GP REGRESSION: ESTIMATING f(x)

This section will work out expressions for different
cases of localization error and sensor noise. Its contents are
extracted from Girard [6] and Rasmussen et al. [19].

A. No localization error

1) No sensor noise: Let’s start with the completely noise-
free base case that’d be built upon. For covariance function,
we chose the squared exponential kernel function due to its
wide usage, differentiability and smoothness. Moreover, this
kernel can theoretically give exact solutions even in noisy
case. In determining the distribution p(f(x)|x, x∗, y∗) where
(x∗, y∗) ∈ {(xi, yi)}Ni=1, since y∗ and f(x) are Gaussian,
we’d have a joint Gaussian distribution of y∗ and f(x).

k(xp, xq) = ve−(xp−xq)2/(2w).[
y∗
f(x)

]
∼ N

(
0,

[
K(x∗, x∗) K(x∗, x)
K(x, x∗) K(x, x)

])
,

where, K(x∗, x∗) is an N ×N matrix defining covariance
of the training samples; K(x, x) denotes covariance ma-
trix of all test points; and other two terms are for cross-
covariances. y∗ is N dimensional vector of scanned points;
k∗ := K(x, x∗) = K(x∗, x)>, Kxx := K(x, x) and
K := K(x∗, x∗). By marginalizing over y∗ we get:

p(f(x)|x, x∗,y∗) ∼ N
(
K(x, x∗)(K(x∗, x∗))

−1y∗,

K(x, x)−K(x, x∗)(K(x∗, x∗))
−1K(x∗, x)

)
,

⇒ p(f(x)|x, x∗, y∗) ∼ N (k>∗ K
−1y∗,Kxx − k>∗ K

−1k∗).

⇒ µf = k>∗ K
−1y∗, Σf = Kxx − k>∗ K

−1k∗,



2) With sensor noise: For a non-zero sensor noise, our
scanned points y∗ now have uncertainty. Since we are
assuming sensor noise to be uncorrelated between samples
so it’s effect appears only along the diagonal of K, i.e.

µf = k>∗ (K + σ2
rI)
−1y∗, Σf = Kxx − k>∗ (K + σ2

rI)
−1k∗.

B. With localization error

For the full noisy case, expressions becomes compli-
cated. Here, our training data has localization error i.e.
xi ∼ N (p̂i, σ

2
pi). We see that kernel function alters because

of variance in xi. Taking constant mean prior on f(x) i.e.
Var[Ex[yi|xi]] = 0, and by law of iterated expectation:

Var[yi|p̂i] = Ex[Var[yi|xi]] + Var[Ex[yi|xi]],

Cov[yi, yj |p̂i, p̂j ] =

∫∫
Cov[yi, yj |xi, xj ]p(xi, xj)dxidxj .

Assuming that any two random points on the ground from
the training data, are independent random variables (i.e.
p(xi, xj) = p(xi)p(xj)) and that all have the same vari-
ance term, σ2

pi = σ2
pj = σ2

p. Recall that kernel func-
tion, k(xi, xj) = Cov[yi, yj |xi, xj ] = ve−(xi−xj)2/(2w), is
squared-exponential, and x as well, is distributed normally,

knoisy(p̂i, p̂j) =

∫∫
N (0, w)N (p̂i, σ

2
p)N (p̂j , σ

2
p)dxidxj .

⇒ knoisy(p̂i, p̂j) = v′e−(p̂i−p̂j)2/(2w′). (1)

where, v′ = v(1 + 2wσ2
p)−1/2 and w′ = w + 2σ2

p. This
step is achieved by reducing the product of Gaussians and
integrating over all xi and xj . Now, in the end we see that
the effect of localization error is a change in the horizontal
and vertical length-scales of the covariance function of our
Gaussian process, while preserving the shape. We have
similar expressions of µf and Σf with noisy kernel function:

µf = k>∗,noisy(Knoisy + σ2
rI)
−1y∗,

Σf = Kxx,noisy − k>∗,noisy(Knoisy + σ2
rI)
−1k∗,noisy.

C. Optimal hyperparameter selection

For optimal length scales (kernel parameters) combina-
tion, we need to maximize this log marginal likelihood.
Among various methods, we used grid-based search to best
fit our acquired data, giving v = 6.15 and w = 4.65.

log p(y∗|x∗, v, w) = − 1
2y∗(K + σ2

rI)
−1y∗− 1

2 log |K + σ2
rI|

−n2 log 2π

IV. THEORETICAL BOUNDS ON THE VARIANCE
OF VOLUME ESTIMATE (σ2

A)

In this section we establish certain bounds on σ2
A in terms

of σ2
p, σ2

r and the process parameters (w and v). Remember,

Σf (t, s) = Kxx(t, s)− k>∗ (t, s)[K + σ2
rI]
−1k∗(t, s), (2)

σ2
A =

∫ W

−W

∫ W

−W
Σf (t, s)dtds. (3)

For ease in comparison, we will index the training samples, x∗, as xi.

We solve this integral in two parts. The term Kxx(t, s)
in (2) has a simple form defined by knoisy(t, s) in (1),∫∫

Kxx(t, s)dtds =

∫∫
v′e−(t−s)2/(2w′)dtds,

= 2v′
(
w′e−2W 2/w′ − w′ +W

√
2πw′ erf(W

√
2

w′
)
)
,

(4)

where erf(x) = 2√
π

∫ x
0
e−t

2

dt. For integrating the second
term in (2) define,

H(t, s) := k>∗ (t, s)[K + σ2
rI]
−1k∗(t, s).

Because of the matrix inversion in the quadratic form, we
simplify by truncating, and thus solve keeping in mind that
the expression is strictly positive definite:

H0(t, s) := k>∗ (t, s)[σ2
rI]
−1k∗(t, s),∫∫

H0(t, s)dtds =

∫∫ n∑
i=1

k(a, i)k(b, i)

σ2
r

dtds,

=
v′

2

σ2
r

n∑
i=1

∫∫
e−((t−xi)

2+(s−xi)
2)/(2w′)dtds,

=
πw′v′2

2σ2
r

n∑
i=1

[erf
(xi −W√

2w′

)
− erf

(xi +W√
2w′

)
]2 6

πw′v′2

2σ2
r

4n.

(5)

The fact that −1 6 erf(x) 6 1 ∀ x ∈ R has lead us to the
above inequality. To relate the two, we highlight certain key
points while avoiding singularities in inversion,

• Sensors are never perfect, i.e. σ2
r > 0.

• Note that, k∗(t, s) > 0 ∀ (t, s) ∈ R2. This pops
from the use of squared exponential kernel (1).

• The covariance matrix of training data, K, is posi-
tive definite, i.e. K � 0, with all individual entries
being positive real numbers (choice of kernel).

With these points, we can safely argue that,

k>∗ (K + σ2
rI)
−1k∗ � k>∗ (σ2

rI)
−1k∗,∫∫

k>∗ [K + σ2
rI]
−1k∗dtds 6

∫∫
k>∗ [σ2

rI]
−1k∗dtds,

⇒
∫∫

H(t, s)dtds 6
∫∫

H0(t, s)dtds. (6)

From (2), (3), (6), and the definitions of H(t, s) and
H0(t, s), we construct the inequality,

σ2
A >

∫ W

−W

∫ W

−W
Kxx(t, s)dtds−

∫ W

−W

∫ W

−W
H0(t, s)dtds.

Thus, incorporating (4) and (5), we arrive at a lower bound
on the volume variance,

σ2
A > 2v′w′

(
e
−2W2

w′ − 1− nπv′

σ2
r

+W

√
2π

w′
erf(W

√
2

w′
)
)
.

(7)

Keep in mind that the inequality due to erf(x) in (5) itself is
a measure of dispersion information of the training samples.
So, in future, we can look for a tighter as well as a lower
bound on the erf(x) expression if we have knowledge about
the distribution of samples.



Fig. 5. Regression posterior with changing σ2
p = [0, 0.2, 1, 2] cm2. Effect

of increasing position error of data points (red) along x-axis is visible. Gray
region is 96% confidence tube and black curve is the mean.

V. SIMULATION RESULTS

We simulated GP regression technique on custom
dataset. ROI in robot’s view was taken −3.5 to 3.5 meters
along canal’s length i.e. x-axis ([−W,W ]). Parameters of
interest include sensor resolution along robot’s position axis,
sensor noise in scanned points (σ2

r ), initial guess of the
length scales (GP parameters – w and v) and most impor-
tantly localization error, σ2

p. Depending on initial choice of
the GP parameters (i.e. w and v, recall the kernel function
from (1)), it becomes evident that w controls the smoothness
of the estimate, whereas v controls deviation from mean.
Likewise, the sensor noise, σ2

r , effects the thickness of
the confidence tube. An interesting series of experiments
performed when we incorporated the localization error in
measurements is shown in Fig. 5. Here, we corrupted our
data points in both perpendicular axes (sensor noise and
localization error) with corresponding normal distributions.
For realistic demonstration, we also altered our initial choice
of the GP parameters based on their relationships with the
variance in localization estimate (w′ = w + 2σ2

p and v′ =

v(1 + 2wσ2
p)−1/2). Our simulations, aimed at initial testing,

gave us the green signal to conduct various experimentation
(surface and volume) on scaled lab model data.

VI. EXPERIMENTS ON A SCALED LAB MODEL

A. Surface estimation experiments

Laboratory setting consisted of a bucket of 4 by 2
sq-ft wide mouth filled up with soil (Fig. 6). Sick laser
scanner (LMS151) was attached with a prismatic joint to
move horizontally at a height above the surface. Progressive
scans of the surface were taken by periodically moving
the scanner. Exact sensor position was noted using an
electric potentiometer and a flat ruler. Four experiments
with different profiles types each, were conducted (Fig. 7).
Scanning resolution used was 2cm. Since, the scans gave
cross-sectional view (similar to Fig. 3), we took the central
(vertically downward) points. We assumed zero localization
error because of precise 2cm movements, and sensor noise
variance of 1.44cm2 – derived from a study of LMS151
[17]. Reconstructed profiles are shown in Fig. 8.

Fig. 6. Hardware assembly of scaled lab model with scanner maneuvering
above along canal length axis (left). Close-up of LMS151 scanner (right).

Fig. 7. Profiles A, B, C, D (top, right, bottom, left) for surface estimation.

Fig. 8. GP Regression results with optimal parameters of the corresponding
profiles (See Fig. 7). Note that, we took σ2

r = 1.44cm2 and σ2
p = 0.

B. Volume experiment

For volume estimation, dig-shaped profile of the soil in
our test bed was scanned, Fig. 9(a). Later, a cylindrical-
shaped object with 6.6cm diameter was placed inside the
dig with its length axis perpendicular to the sensor’s mo-
tion and scanned again, Fig. 9(b). Optimal parameters for
both states were chosen independently, and after regression
corresponding profiles were plotted in Fig. 10. For volume,
we overlaid the two profiles, specified ROI (i.e. where
cylinder object was placed) to avoid error accumulation and
measured the area of enclosed region, Fig. 11. The choice
of object being cylindrical was to avoid unnecessary surface
irregularities. Actual cross-sectional area of the cylinder was
πr2 = 34.22cm2. Estimate given by numerical integration
was 40.71cm2. Volume estimate standard deviation came out
to be 6.423cm2. High deviation is due to high sensor noise
(1.44cm2) and large sampling resolution (2cm).



Fig. 9. Two states of the channel model: (a) Baseline (left); (b) Silted
(right).

Fig. 10. Optimally estimated surfaces of Baseline (left) and Silted (right)
states of channel model (See Fig.9). For both, σ2

r = 1.44cm2 and σ2
p =

0cm2.

Fig. 11. Plots depicting one-dimensional view of the silt volume estimation
experiment. The hump enclosed by the dashed lines represents the approx-
imated surface of the cylindrical object used (See Fig. 9). The difference
in surfaces outside this region is because of noise in sensor readings.

VII. CONCLUSIONS AND DISCUSSION

This paper is a first attempt towards analyzing accuracy
of the volume estimates using probabilistic modeling of silt
surfaces in canals. We use Gaussian process regression to
model surfaces, considering uncertainty of robot’s localiza-
tion and its sensor precision. Novelty of our presented work
lies in incorporation of localization error and then, arriving at
closed-form expressions that limit the achievable accuracy in
estimates of silt volume. Through simulations, we have seen
that increased localization error effect surface estimation and
corresponding volume quite significantly. The sensor noise
does not disrupt the shape, rather it narrows or tightens
the confidence of the estimate. We have analyzed that, for
accurate inspection task, localization capability weighs more
in importance over sensor accuracy. Scaled lab experiments
depict feasibility and deployability of our algorithm.

In future, information of dispersion of data points and
sensor resolution can help in getting tighter theoretical
bounds. Full 3D sensor model and other kernel functions
can also be studied. Usefulness of our work shall become
apparent upon comparison of manual canal surveying pro-
cess with our aerial inspection system. Note that, Gaussian
process regression for large 3D point clouds is not practically
efficient. However, our analysis provides useful insights
before implementing any practical algorithm that looks to
achieve the theoretical performance promised by an optimal

estimation framework.
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