
* 1

ADMM-based Networked
Stochastic Variational Inference

Hamza Anwar, Member, IEEE, and Quanyan Zhu, Member, IEEE

Abstract—Owing to the recent advances in “Big Data” mod-
eling and prediction tasks, variational Bayesian estimation has
gained popularity due to their ability to provide exact solutions
to approximate posteriors. One key technique for approximate
inference is stochastic variational inference (SVI) [1]. SVI poses
variational inference as a stochastic optimization problem and
solves it iteratively using noisy gradient estimates. It aims to
handle massive data for predictive and classification tasks by
applying complex Bayesian models that have observed as well as
latent variables. This paper aims to decentralize it allowing paral-
lel computation, secure learning and robustness benefits. We use
Alternating Direction Method of Multipliers in a top-down setting
to develop a distributed SVI algorithm such that independent
learners running inference algorithms only require sharing the
estimated model parameters instead of their private datasets. Our
work extends the distributed SVI-ADMM algorithm that we first
propose, to an ADMM-based networked SVI algorithm in which
not only are the learners working distributively but they share
information according to rules of a graph by which they form
a network. This kind of work lies under the umbrella of ‘deep
learning over networks’ and our application domain is natural
language processing. We illustrate the results on latent Dirichlet
allocation (LDA) topic model in large document classification,
compare performance with the centralized algorithm, and use
numerical experiments to corroborate the analytical results.

Index Terms—variational inference, transfer learning, stochas-
tic optimization, method of multipliers, inference over networks

I. INTRODUCTION

II. ADMM-BASED DISTRIBUTED SVI

BUILDING upon the recent work on SVI by Hoffman et
al., [1], we consider the SVI problem for a network of

learners.
The N observations are x = x1:N ; the vector of global

hidden variables is β; the N local hidden variables are z =
z1:N , each of which is a collection of J variables zn = zn,1:J ;
the vector of fixed parameters is α. (Note we can easily allow
α to partly govern any of the random variables, such as fixed
parts of the conditional distribution of observations. To keep
notation simple, we assume that they only govern the global
hidden variables.)

This work is partially supported by the grants EFMA-1441140 and SES-
1541164 from National Science Foundation.

H. Anwar and Q. Zhu are with the Department of Electrical and Computer
Engineering, New York University, New York, NY 10003 USA (e-mail:
ha1082@nyu.edu, qz494@nyu.edu).

Manuscript received , 2017; revised September 11, 2017.

A. Optimization problem

min
λk

K∑
k=1

gk(λk)

subject to λk − ζ = 0, k = 1, · · · ,K
λk ∈ Γk

where each λk is an m-sized vector and Γk indicates the
feasible set for the variables λk (typically Γk = Rm+) and,

gk(λk) := −Eφ(λk)[ηg(x, z)]
>∇λk

ag(λk) + λ>k∇λk
ag(λk)

−ag(λk) + const.
(1)

which is the standard SVI problem objective function for a
single learner. The above optimization problem gives us a
solution for K learners when they form a consensus. Using an
Augmented Lagrangian approach, as in ADMM, we solve this
problem in a distributed iterative fashion for multiple learners.

B. ADMM-based solution

Augmented Lagrangian with a quadratic penalty is used
to arrive at the ADMM update iterations. The Lagrange
multipliers are denoted by yk ∈ Γk. Minimization updates
for each processor/agent are given as:

λt+1
k = arg min

λk

(
gk(λk) + (λk − ζt)>ytk +

c

2
||λk − ζt||22

)
,

ζt+1 :=
1

K

K∑
k=1

(
λt+1
k + (1/c)ytk

)
,

yt+1
k := ytk + c(λt+1

k − ζt+1).

where ζ is called the central collector, and c is the quadratic
penalty parameter in the augmented Lagrangian which is given
as:

Lc({λk}, {yk}, ζ) =

K∑
k=1

gk(λk)+(λk−ζ)>yk+
c

2
||λk−ζ||22.

Here, we note that the λ-minimization update which is ac-
tually a solution to λt+1

k = arg minλk∈Γk
Lc({λk}, {ytk}, ζt),

requires solving a constrained non-convex optimization prob-
lem. We solve this in a gradient descent fashion in of itself, as
the standard SVI problem was also solved, but the original so-
lution requires inversion of a Hessian matrix. For that we take
into account one-step earlier value of λtk — for details about
derivation and Hessian inversion approximation used, see Ap-
pendix. Thereby, our proposed iterative ADMM methodology

* 2

runs along with a gradient-descent iterative update of variables
which is completely summarized in algorithm 1.

Algorithm 1 ADMM-based distributed SVI for K players

1: Initialize c, λ(0)
1 , λ

(0)
2 , . . . , λ

(0)
K

2: Schedule step-size ρt routine
3: repeat
4: for k ∈ K do
5: Sample separate data points for all learners
6: Use xk to compute its local variational parameters,

φ = Eλt
k
[ηl(x

(N)
k , z

(N)
k)].

7: Apply ADMM λ-minimization-update by comput-
ing intermediate global parameters λ̂k and natural gradi-
ent,

λ̂k = Eφ[ηg(x
(N)
k , z

(N)
k)],

∇̂λt
k
Lc = (λtk − λ̂k)−∇−2ag(λ

t
k)(ytk + c(λtk − ζt)).

8: Update the global variational parameters using
gradient ascent,

λt+1
k = λtk + ρt(−∇̂λt

k
Lc).

9: end for
10: Update the central collector

ζt+1 =
1

K

K∑
k=1

λt+1
k + (1/c)ytk.

11: Update all the Lagrange multipliers

yt+1
k = ytk + c(λt+1

k − ζt+1).

12: until forever

C. Experimental results

New set of experiments for the distributed problem was
performed with multiple learners. Here, we show the results
with 4 learners. Figure 1, shows the convergence properties of
our distributed learners, for a metric of the estimated model’s
fitness, known as the ‘held-out perplexity’. This same metric
has been used by Hoffman et al. [2] to show convergence of the
algorithm. A comparison of centralized versus distributed two-
player SVI algorithms is depicted in Figure 2. We conclude
that all the learners not only converge to higher precision in
estimates (evident from the Figure 1), but also achieve accu-
racy of estimates (evident from Table I), while simultaneously
maintaining consensus.

From Table I, we see that the highly probable words for a
given topic learned by any of the four learners all direct to a
similar kind of subject. For example, in Topic#98, the learners
understood it to represent the names of months — even though
for this topic, the distribution of word occurrences is different
for the four players but it is evident that they all point to the
same abstract class of words. Similarly, in other topics as well
we see similarity in estimates. Sometimes, we even see that
the descending order of the words is exactly the same, e.g.,
in Topic#72 and Topic#38 all learners have the same ordering

0 5 10 15 20 25 30 35 40

iterations

1500

2000

2500

3000

3500

4000

H
el

d-
ou

t P
er

pl
ex

ity Player 1
Player 2
Player 3
Player 4

Fig. 1. Four players running independent learners and collaborating. This
plot shows that the perplexity is decreasing over time.

1 2 3 4 5
1000

2000

3000

4000

5000

6000

Hours (square−root scale)

H
el

d−
ou

t p
er

pl
ex

ity
(m

et
ric

 fo
r

m
od

el
 fi

tn
es

s)

Dist. Player 1

Dist. Player 2

Centralized

Fig. 2. Working for a two player network versus centralized algorithm.

TABLE I
TOP THREE WORDS FOR FIVE TOPICS LEARNED BY EACH OF THE FOUR

PLAYERS AFTER 35 ITERATIONS I.E. 64× 35 = 2240 INDEPENDENT
DOCUMENTS ANALYZED BY EACH PLAYER. WORDS ARE WRITTEN IN

DESCENDING ORDER OF PROBABILITY OF OCCURRENCE. PENALTY
PARAMETER FOR ADMM c = 5× 10−8 , AND TOTAL TOPICS WERE 100.

Player 1 Player 2 Player 3 Player 4
june september september september

Topic#98 march october october october
november november november november

elected elected elected elected
Topic#72 democratic democratic democratic democratic

republican republican republican republican
functions functions actor functions

Topic#59 users users functions actor
file file user user

university university university university
Topic#56 college college college education

education education education college
music music music music

Topic#38 song song song song
single single single single

of words. Thus, the table shows that despite the fact that all
learners use their own independently fetched datasets from
Wikipedia articles, the consensus between results is achieved
among all the learners, due to the central collection constraint.

III. ADMM-BASED NETWORKED SVI

Now, after conclusive results about distributed ‘fully-
conected’ SVI algorithm, we move on to a network of nodes
having independent learners residing at each node. The only
difference in problem formulation, as we will see is in the
equality constraints. We use the network formulation as given
in [3].

The network is modeled by an undirected graph denoted
by G(K, E) with K := {1, . . . ,K} representing the set of
nodes, and E representing the set of links between nodes.
Node k ∈ K only communicates with his neighboring

* 3

Nk
zkn xknβkαk

Fig. 3. A graphical probabilistic model for each node k in the graph G

λ1

λ3

λ8

λ4

λ6

λ7

λ5

λ2

Fig. 4. Example of an undirected graph G(8, 8) having 8 nodes and 8 edges.
Here, node 4 has the highest number of neighbors B4 = {2, 3, 5, 6}.

nodes Bk ⊆ K. Note that without loss of generality, graph
G is assumed to be connected. The network can contain
cycles. An example of such a network is is shown in Figure
4.
At every node k ∈ K, a set of observations Dk := {xkn :
n = 1, . . . , Nk} of size Nk is available, where xkn
denotes the n-th observation for the k-th node. Though
not explicitly expressed, each xkn can be a collection of
multiple random variables. The vector of global hidden
variables for node k is βk; its Nk local hidden variables
are zk = zk,1:N , each of which is a collection of J
variables zkn = zkn,1:J ; the vector of fixed parameters
is αk.

With the graph formulation given above, we pose the
distributed SVI problem for a network of learners given as:

min
{λk}

K∑
k=1

gk(λk)

s.t. λk = λl,∀k ∈ K, l ∈ Bk

(2)

with λ1, · · · , λK as variables. Here, gk : Γk → R+ is a non-
linear function of λk re-written here:

gk(λk) := −Eφ(λk)[ηg(x, z)]
>∇λk

ag(λk) + λ>k∇λk
ag(λk)

−ag(λk) + const.

Optimization problem (2) is equivalent to the following,

min
{λk}

K∑
k=1

gk(λk)

s.t. λk = ζkl, ζkl = λl, ∀k ∈ K, l ∈ Bk

(3)

where ζkl are redundant variables that will facilitate the
decoupling of variable λk at node k from its neighboring nodes

l ∈ Bk. This problem will be solved using its dual. We denote
the Lagrange multipliers by ykl1 (ykl2) for the constraints
λk = ζkl (ζkl = λl). We observe that for each k we have
2|Bk| equality constraints. The augmented Lagrangian with a
quadratic penalty is:

Lc ({λk}, {ζkl}, {yklj})=

K∑
k=1

(
gk(λk) +

∑
l∈Bk

(
y>kl1(λk − ζkl)

+y>kl2(ζkl − λl) +
c

2

(
||λk − ζkl||2 + ||ζkl − λl||2

)))
,

(4)

The augmented Lagrangian can be iteratively minimized with
respect to each variable by keeping others constant, which
gives us a set of minimization updates for each variable
summarized in the following Proposition.

A. Proposition 1

The distributed iterations solving (3) are as follows:

λt+1
k = arg min

λk


gk(λk) + λ>k

∑
l∈Bk

(
ytkl1 − ytlk2

)
+
c

2

∑
l∈Bk

(
||λk − ζtkl||2 + ||ζtlk − λk||2

)
(5)

ζt+1
kl = arg min

ζkl

−ζ
>
kly

t
kl1 + ζ>kly

t
kl2 +

c

2

(
||λt+1

k − ζkl||2
)

+
c

2

(
||ζkl − λt+1

l ||
2
)
(6)

yt+1
kl1 = ytkl1 + c(λt+1

k − ζt+1
kl), ∀k ∈ K, l ∈ Bk (7)

yt+1
kl2 = ytkl2 + c(ζt+1

kl − λ
t+1
l), ∀k ∈ K, l ∈ Bk (8)

and correspond to the standard ADMM solver discussed in [4].

Proof: The first task is to cast the problem (3) into standard
ADMM problem form in [4]. The network description adopted
here is similar to the one used in [5] and thus we use it
to establish equivalence with standard ADMM [4]. Thereby,
the remaining form of the minimization updates is directly
derived from the augmented Lagrangian given in (4). The λ-
minimization update (5) is derived by eliminating the terms
that do not affect the minimization in augmented Lagrangian:

λt+1
k = arg min

λk

Lc(λk, {ζtkl}, {ytkl1}, {ytkl2}),

= arg min
λk


gk(λk) +

∑
l∈Bk

(
λ>k y

t
kl1 +

c

2
||λk − ζtkl||2

)
+
∑
s∈Bk

(
−λ>k ytsk2 +

c

2
||ζtsk − λk||2

) ,
which upon merging the two summations reduces to (5).
Similarly, the ζ-minimization update (6) comes directly from,

ζt+1
kl = arg min

ζkl

Lc({λt+1
k }, ζkl, {y

t
kl1}, {ytkl2}).

Equations (7)–(8) are the dual variable updates (cf. [5]). �

* 4

Next we reduce the iteration equations to a simpler form.
Here, we observe that the ζkl update has the following unique
solution (by putting the derivative equal to zero and solving),

ζt+1
kl =

1

2c
(ytkl1 − ytkl2) +

1

2
(λt+1
k + λt+1

l) (9)

Putting (12) in (7)–(8) gives,

yt+1
kl1 =

1

2
(ytkl1 + ytkl2) +

c

2
(λt+1
k − λt+1

l), (10)

yt+1
kl2 =

1

2
(ytkl1 + ytkl2) +

c

2
(λt+1
k − λt+1

l). (11)

Now, we assume that both the Lagrange multipliers are iden-
tically initialized at every node k, as zero y0

kl1 = y0
kl2 =

0m×1 ∀k ∈ K, l ∈ Bk. This ensures that y1
kl1 = y1

kl2, and
y2
kl1 = y2

kl2, and son on. We see that only one of the two
multipliers per node needs to be updated at each time step.
Furthermore, (9) simplifies to,

ζt+1
kl =

1

2
(λt+1
k + λt+1

l). (12)

Finally the ADMM iterations ∀k ∈ K simplify, summarized
in the following Proposition.

B. Proposition 2
Selecting y0

k := y0
kl1 = y0

kl2 = 0m×1 as initialization ∀k ∈
K, l ∈ Bk, the iterations (5)–(8) reduce to the following,

λt+1
k = arg min

λk

gk(λk) + λ>k y
t
k + c

∑
l∈Bk

∣∣∣∣∣∣∣∣λk − 1

2
(λtk + λtl)

∣∣∣∣∣∣∣∣2
(13)

yt+1
k = ytk + c

∑
l∈Bk

(λt+1
k − λt+1

l), ∀k ∈ K (14)

Proof: Substituting (12) into the objective (5) gives the
following,

arg min
{λk}

Lc({λk}, {λtk}, {ζtkl}, {ytkl1}, {ytkl2}) =

K∑
k=1

(
gk(λk) + λ>k

∑
l∈Bk

(
ytkl1 − ytlk2

)
+

c

2

∑
l∈Bk

(∣∣∣∣∣∣∣∣λk − 1

2
(λtk + λtl)

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣12(λtl + λtk)− λk
∣∣∣∣∣∣∣∣2
))

.

(15)

Note that {λk} is the set of all variables of optimization and
{λtk} denote constants known from previous iteration. All-zero
initialization of the Lagrange multipliers implies that ytkl1 =
−ytlk1∀t [cf. from (10)–(11)], and so the first double sum in
(15) can be rewritten as:

K∑
k=1

∑
l∈Bk

λ>k
(
ytkl1 − ytlk2

)
= 2

K∑
k=1

λ>k
∑
l∈Bk

ytkl1. (16)

The other two double sums in (15) can be simplified to give,

c

2

∑
l∈Bk

(∣∣∣∣∣∣∣∣λk − 1

2
(λtk + λtl)

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣12(λtl + λtk)− λk
∣∣∣∣∣∣∣∣2
)

= c
∑
l∈Bk

(∣∣∣∣∣∣∣∣λk − 1

2
(λtk + λtl)

∣∣∣∣∣∣∣∣2
)
. (17)

By defining ytk := 2
∑
l∈Bk

ytkl1, and substituting (16) and
(17) into (15), gives the final form of the augmented La-
grangian which completes the proof:

arg min
{λk}

Lc({λk}, {λtk}, {ytk}) =

K∑
k=1

gk(λk) +

K∑
k=1

λ>k y
t
k

+ c

K∑
k=1

∑
l∈Bk

∣∣∣∣∣∣∣∣λk − 1

2
(λtk + λtl)

∣∣∣∣∣∣∣∣2 .
�

C. Network solution

Now, we present a solution to the ADMM minimization
update (13), which is a non-convex optimization problem,
similar to the corresponding update in distributed SVI in
section II-B. We make use of stochastic gradient descent
like standard SVI algorithm for minimization of augmented
Lagrangian (cf. [1]). It is known that the natural gradient of
gk is given as,

∇̂λk
gk(λtk) = λtk − λ̂k.

The solution is presented in algorithm 2.

Algorithm 2 ADMM-based networked SVI for K players

1: Initialize c, λ(0)
1 , λ

(0)
2 , . . . , λ

(0)
K

2: Schedule step-size ρt routine
3: repeat
4: for k ∈ K do
5: Sample separate data points xk for all learners
6: Use xk to compute its local variational parameters,

φ = Eλt
k
[ηl(x

(N)
k , z

(N)
k)].

7: Apply ADMM λ-minimization-update by comput-
ing intermediate global parameters λ̂k and natural gradient
of augmented Lagrangian,

λ̂k = Eφ[ηg(x
(N)
k , z

(N)
k)],

∇̂λt
k
Lc = (λtk−λ̂k)−

[
∇−2ag(λ

t
k)
](

ytk + c
∑
l∈Bk

(
λtk − λtl

))
.

8: Update the global variational parameters using
gradient ascent,

λt+1
k = λtk + ρt

(
−∇̂λt

k
Lc

)
.

9: end for
10: Update all the Lagrange multipliers

yt+1
k = ytk + c

∑
l∈Bk

(
λt+1
k − λt+1

l

)
.

11: until forever

D. Experimental results

The issue of cross-matching the topics between two different
players was solved using a correlation metric. Like discussed

* 5

2

3

1

4

0

(a) 0.5 1 1.5 2 2.5

Total documents analyzed by network 105

900

950

1000

1050

1100

1150

H
el

d-
ou

t P
er

pl
ex

ity

Node 4
Node 3
Node 2
Node 1
Independent Node

(b)

Fig. 5. (a) Line-type graph network. Dotted line between two nodes indicates
same dataset supply. Solid line indicates possibility of transfer learning
between nodes via ADMM. (b) Perplexity trajectory for a line-type graph.

2

3

1

4

(a)

1 2 3 4 5 6 7 8

Total documents analyzed by network 104

1200

1300

1400

1500

1600

H
el

d-
ou

t P
er

pl
ex

ity

Node 1 (V1)
Node 2 (V1)
Node 3 (V1)
Node 4 (V1)
Node 1 (V2)
Node 2 (V2)
Node 3 (V2)
Node 4 (V2)

(b)

Fig. 6. (a) Star-type strongly connected network. (b) Perplexity trajectory
for a strongly connected network (V1) versus a weakly connected line-type
network (V2). Clearly strongly connected network starts performing better
after some iterations.

earlier, SVI relies on random initialization of the global
parameters. So, each player initializes with different global
parameters, and as they encounter observations, they update
the global parameters. Since, in our setting each player has
its own independent dataset, so the trajectory of converging to
‘true’ topics is different for every player. That is why, if two
completely independent learners are fed the same data, they
converge to similar estimates but with different trajectories (i.e.
topic 0 for player A may truly represent the contents of topic
43 for player B, and so on). Thus, in order to match the right
topics, a correlation metric was needed. We used the Pearson
correlation coefficient for this.

Result for an experiment that used a line-type graph is
shown in Fig. 5b. The network is shown in Fig. 5a. In this
experiment nodes 0 and 1 were provided with exactly same set
of data (limited to a fixed 800 documents offline available that
were fed repeatedly). The nodes 2, 3, and 4 were provided with
an online data i.e. independent and new data points at each
iteration. The purpose of this experiment was to see how the
connected nodes corroborate and improve estimation accuracy
(of node 1) in contrast to accuracy of the independently
running learners (i.e. node 0). The perplexity metric trajectory
shown in Fig. 5b, supports our claim that node interaction
through ADMM updates certainly benefits. We achieve better
accuracy in the estimate of node 1 as compared to that of node
0 because the learning at nodes 2-4 affects that of node 1 due
to the consensus constraint.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Total documents analyzed by network 105

1300

1400

1500

1600

1700

H
el

d-
ou

t P
er

pl
ex

ity

Node 1
Node 2
Node 3
Node 4
Node 5

Fig. 7. Independent SVI with complete data versus networked SVI with
partitioned data. Node 1 is an independent learner. Nodes 2-5 are connected
in a network having partitioned datasets.

IV. DISCUSSION AND CONCLUSION

ACKNOWLEDGMENT

REFERENCES

[1] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic vari-
ational inference,” The Journal of Machine Learning Research, vol. 14,
no. 1, pp. 1303–1347, 2013.

[2] M. Hoffman, F. R. Bach, and D. M. Blei, “Online learning for latent
dirichlet allocation,” in advances in neural information processing sys-
tems, 2010, pp. 856–864.

[3] R. Zhang and Q. Zhu, “Secure and resilient distributed machine learning
under adversarial environments,” in Information Fusion (Fusion), 2015
18th International Conference on. IEEE, 2015, pp. 644–651.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[5] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based distributed
support vector machines,” Journal of Machine Learning Research, vol. 11,
no. May, pp. 1663–1707, 2010.

