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Abstract:
Owing to the recent advances in “Big Data” modeling and prediction tasks, variational Bayesian
estimation has gained popularity due to their ability to provide exact solutions to approximate
posteriors. One key technique for approximate inference is stochastic variational inference (SVI),
Hoffman et al. (2013). SVI poses variational inference as a stochastic optimization problem and
solves it iteratively using noisy gradient estimates. It aims to handle massive data for predictive
and classification tasks by applying complex Bayesian models that have observed as well as
latent variables. This paper aims to decentralize it allowing parallel computation, secure learning
and robustness benefits. We use ADMM in a top-down setting to decentralize SVI algorithms
such that independent learners running inference algorithms only require sharing the estimated
model parameters instead of their private datasets. We illustrate the results on latent Dirichlet
allocation (LDA) topic model in large document classification, compare performance with the
centralized algorithm, and use numerical experiments to corroborate the analytical results.
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1. INTRODUCTION

The explosive influx of data and information for modern
day technological systems has opened doors to revolution-
ary possibilities. One of the most vital uses of this data
is for modeling, visualizing, and analyzing large datasets
through probabilistic tools. Statistical machine learning
is at the core of numerous such applications in what is
becoming known as Internet of Things (IoT). Such itera-
tive learning mechanisms improve control performance for
many cyber-physical-systems in which parameter estima-
tions and system identifications are required. Probabilistic
graphical modeling is one key research area that has played
an important role in data analysis in inference and predic-
tion tasks (see Koller and Friedman (2009)). These models
visually express the assumptions about data and its hidden
structure. Posterior inference algorithms have been proven
to exploit such models in explaining this hidden structure
while being adaptive, robust, parallelizable, and scalable.

Variational inference, from the late 90s, is a method
that transforms complex inference problems into high
dimensional optimization problems. In contrast to Monte-
Carlo sampling methods (that simply aim to find the
exact answer to an approximate problem), the variational
Bayesian approach solves for an optimal solution under
constraints to the right inference problem, Jordan et al.
(1999). On the same lines, stochastic variational inference
(SVI) was developed recently that extends variational
inference to be solved using stochastic optimization under
certain assumptions, Hoffman et al. (2013). SVI works
iteratively in gradient ascent fashion using noisy gradient
estimates. It provides approximate model posteriors with
only a few passes through a large data collection, making

it highly scalable. We propose ADMM-based SVI – a
distributed stochastic variational inference technique that
builds upon standard SVI, retaining most of its benefits,
based on the highly parallelizable alternating direction
method of multipliers (ADMM).

Related Work Numerous extensions have been proposed
for the SVI framework in its application to more model
classes (by Foti et al. (2014) and Johnson and Willsky
(2014)), different underlying processes (by Hensman et al.
(2013) and Gal et al. (2014)), and structural exploitations
(by Hoffman and Blei (2015)) making it faster and widely
deployable. A variety of works focuses on making vari-
ational methods distributed to enhance parallelizability.
The work on distributed Bayesian nonparametric models
by Campbell et al. (2015) is commendable in making vari-
ational inference updates distributed, asynchronous, and
‘streaming’ (online) and they have shown it to outperform
standard SVI. However, their work is only specific to the
Dirichlet process mixture and lacks in generalizability to
the class of probabilistic models that SVI can deal with.
Similar to Campbell et al. (2015), another work D-MFVI
by Babagholami-Mohamadabadi et al. (2015) uses ADMM
for decentralizing, like us, but lacks in being extendable
to online updates, fast convergence rate, and other de-
sirable properties of SVI. Distributed VBA (Hua and Li
(2016)) also uses ADMM however their approach lacks
in scalability to large data without demanding adequate
computational resources.

None of these works use stochastic optimization methods
to speed up inference and hence they are fundamentally
different from standard SVI itself. One recent work on the
extended-SVI by Raman et al. (2016) retains the benefits



of SVI while making it distributed and asynchronous. They
employ a rather simple algorithmic change to SVI however
their work remains unexplored in terms of depth because
they particularly focus on Gaussian mixture models and do
not provide how it is extendable to all other probabilistic
models for which SVI in general works.

In contrast to all related works highlighted, our ap-
proach extends the general SVI framework to a distributed
stochastic optimization consensus problem. We tackle the
issue of generalizability to all graphical models by pro-
viding a general solution and make use of the stochastic
gradient updates that make it fast. We run ADMM up-
dates along with stochastic gradient ascent for variational
objective to reach consensus among a number of dis-
tributed learners. We also discuss convergence properties
and linear-time computational benefits for the complexity
that ADMM adds to standard SVI. SVI itself being a
non-convex stochastic optimization problem makes the
distributed problem trickier. Proving convergence for this
non-convex stochastic consensus problem is not trivial.
Convergence for non-convex structured ADMM problems
is a hot topic and recent works on it are fruitful to our
analysis (Magnússon et al. (2014) and Hong et al. (2015)).
In this paper, we argue for the theoretical existence of
locally optimal equilibrium solution and show almost-sure
algorithm convergence through numerical experiments.
Our work aims to show that independent learners that use
SVI for similar applications, can collaborate by exchanging
their results (not the data itself) to benefit from each
other improving overall accuracy of results. This approach
makes our work unique and applicable to wider distributed
large-scale inference problems. Furthermore, this kind of
an approach poses a game problem with multiple agents
interested in performing their inference tasks, and simulta-
neously benefiting from each other through reinforcement
learning and cooperation.

The paper is organized as follows: firstly, we provide a
summary of the working of stochastic variational inference
followed by our proposed distributed SVI using ADMM
in Section 2. We formulate the problem, pose conditions
for optimality and present the SVI–ADMM algorithm in
Section 3. Afterwards, we give insights to the algorithm’s
convergence properties in detail in Section 4. Finally,
the implementations for distributed SVI along with nu-
merical experiments and results for a massive document-
classification problem are presented in Section 5. We con-
clude the paper in Section 6.

2. STOCHASTIC VARIATIONAL INFERENCE

SVI is an algorithm for stochastic optimization of mean-
field variational inference. We will explain it as a review.

2.1 Model setup

We denote x = x1:N as observations, each observation xn
being a random vector, xi,n : X → R where X is the
probability space corresponding to the actual unknown
marginal distribution of the model p(x). Likewise, z =
z1:N,1:J are local hidden random variables (that govern the
underlying relationship between data and model locally,
i.e., we have J hidden variables for each of N observations)

and β = β1:K as K global hidden variables, where random
vector βk has βi,k : B → R. α are fixed and known
hyperparameters to start with – the particular choice of
probability distributions of the latent random variables
governs corresponding number of hyperparameters, for
instance a one-dimensional Gaussian process exhibits two
types of hyperparameters, the vertical and horizontal
length-scales. The standard problem is to determine the
posterior distribution that relates the data and the model:

p(z, β|x, α) =
p(z, x, β|α)∫
z,β

p(z, x, β|α)
.

In general, the denominator term (marginal likelihood) is
intractable to compute for many models especially when
dataset is large.

A natural choice of tractable family of distributions Q is
the exponential family. Moreover, the sufficient statistics
do not increase in size with data points which makes it very
stable and tractable. Distributions in exponential family
are of the form:

p(β|x, z, α) = h(β) exp (ηg(x, z, α)>t(β)− ag(ηg(x, z, α))),

where the global natural parameter ηg relates linearly with
the sum of the local sufficient statistics of local parameters
t(xn, zn), and ag, function of natural parameter, is the log-
normalizer.

2.2 Variational inference

Standard variational inference finds an approximate pos-
terior to the original posterior inference problem. It min-
imizes a measure of dissimilarity between two posteriors.
The Kullback-Leibler divergence is used as that measure
of dissimilarity. The idea is to choose a class of tractable
distributions Q and find the probability distribution clos-
est to the posterior distribution of the actual model given
the observations:

arg min
q∈Q

KL[q(z, β)||p(z, β|x)].

Since we have no knowledge about the form of p(x, z, β),
so we cannot directly minimize the objective. To tackle
this, we find the evidence lower bound (ELBO), L̂(q), of
the posterior:

log p(x)=log

∫
p(x, z, β)

q(z, β)

q(z, β)
dzdβ=log

(
Eq
[p(x, z, β)

q(z, β)

])
≥ Eq[log p(x, z, β)]− Eq[log q(z, β)] =: L̂(q) (1)

ELBO gives a lower bound on the log-marginal likelihood.
Maximizing ELBO is equivalent to minimizing the KL-
divergence. The KL-divergence relates to ELBO through
the following:

KL[q(z, β)||p(z, β|x)] = Eq[log q(z, β)]−Eq[log p(z, β|x)]

= Eq[log q(z, β)]− Eq[log p(x, z, β)] + log p(x)

= −L̂(q) + const.

With this formulation, the variational inference problem
can be solved using the steps highlighted ahead.

Mean-field assumption: For a feasible solution to the
above problem, we require that each variable in the dis-
tribution is independent of others and only depends on



its own governing parameters. Hence, the global and lo-
cal variables have their respective global and local ‘free’
parameters (λ and φ),

p(x, z, β) = p(β|α)

N∏
n=1

p(xn, zn|β),

q(z, β) = q(β|λ)

N∏
n=1

J∏
j=1

q(znj |φnj).

Think of λ ∈ Γ (feasible parameter space) as global
parameters because β, being a random variable param-
eterized by λ, affects p(x, z|β) globally; and φnj ∈ ΦD as
local parameters because each latent variable znj contains
hidden structure that governs j-th variable in n-th (local)
observation. Owing to the exponential form for q(β|λ) and
q(znj |φn), their log inside the objective simplifies manipu-
lation and finally the objective function can be re-written
as function of λ and φ,

L̂(λ, φ) = Eq[log p(β|x, z)]− Eq[log q(β|λ)]

+

N∑
n=1

J∑
j=1

(
Eq[log p(xn, znj)]− Eq[log q(znj |φnj)]

)
.

Co-ordinate ascent: The objective function is first max-
imized w.r.t. local parameters φ. Assume that φ(λ) := φ∗

locally maximizes L̂(λ, φ) for a given λ. We denote L(λ)
as the locally maximized ELBO, i.e., L(λ) := L(λ, φ∗).
For maximizing the locally maximized ELBO w.r.t. global
parameters, we manipulate the terms that depend on λ
and use first-order-necessary conditions to arrive at local

maximizer λ̂. A similar derivation for local parameters,
gives optimum φnj :

L(λ) = Eq[ηg(x, z, α)]>∇λag(λ)− λ>∇λag(λ) + ag(λ)

+ const. (2)

∇λL(λ) = [∇2
λag(λ)]>(Eq[ηg(x, z, α)]− λ),

∇̂λL(λ) = [∇−2λ ag(λ)]∇λL(λ) = Eq[ηg(x, z, α)]− λ (3)

λ̂ := Eq[ηg(x, z, α)], φnj = Eq[ηl(xn, zn,−j , β)].

The optimum j-th local parameter in n-th observation
context, φnj , depends on the global parameters and other
local parameters in the same context. However, the global
parameter λ depends on all the local parameters φ1:N,1:J .
This structure suggests an iterative co-ordinate ascent
update (ρt is step-size) solution:

λt+1 = λt+ρt∇̂λL(λt) = λt+ρt(λ̂−λt) = (1−ρt)λt+ρtλ̂.

2.3 The SVI algorithm

The centralized SVI Algorithm 1 uses variational infer-
ence. The global parameter updates rely on information
from all local parameters, which is impossible to imple-
ment for massive datasets. For this reason, the standard
gradient is replaced by the stochastic gradient. One data
point is drawn at random from the data set and its local
parameters are learned based on prior knowledge of global
parameters (initialized). Locally maximized objective is
obtained with this step. Then, before the next data point,
this data point is replicated N times as if there had been
N occurrences of the same data in the dataset. Using
this, a noisy estimate of the global parameters is learned.

This noisy estimate of global parameters is termed global
intermediary parameters, and it is used in determining
the stochastic gradient required for the gradient ascent
step, which completes one iteration with both local and
global updates. Note that the natural gradient 1 in place of
Euclidean gradient is used due to ease of computation and
the structure of probability space in which the objective
is defined (See (3)). For convergence of SVI algorithm,
the step-size must be set with the following conditions
(Robbins and Monro (1951)), with appropriate constants
(delay τ ≥ 0 and forgetting-rate κ ∈ (0.5, 1]):∑

t
(ρt) =∞,

∑
t
(ρt)2 <∞, ρt = (t+ τ)−κ.

Algorithm 1 Stochastic Variational Inference (Central-
ized)

1: Initialize λ(0)

2: Schedule step-size ρt routine
3: repeat
4: Sample a data point xi from the data set
5: Compute its local variational parameters,

φ = Eλt [ηl(x
(N)
i , z

(N)
i )].

6: Compute intermediate global parameters as if xi is
replicated N times,

λ̂ = Eφ[ηg(x
(N)
i , z

(N)
i )].

7: Update the global variational parameters,

λt+1 = (1− ρt)λt + ρtλ̂.

8: until forever

3. DECENTRALIZING SVI USING ADMM

Now that we have established the framework and in-
troduced fundamental principles behind the working of
stochastic variational inference, we now focus on formulat-
ing SVI for a decentralized setting in which independent
learners (systems that can run SVI on the data they pos-
sess) can contribute to a global learner model. Alternating
Direction Method of Multipliers (ADMM), Gabay and
Mercier (1976), is a robust technique to decentralize a
complex problem by decomposing it into smaller problems
solvable in a parallel way. We shall restrict to the use of
ADMM (Eckstein (2012)) technique to solve this consen-
sus problem. Literature is available for such problems for
a variety of settings differing in the particular form of the
objective function to be minimized and its corresponding
constraints. In this section, at first, we shall formulate
the proposed distributed SVI problem as a non-convex
stochastic ADMM problem. Then, we shall explain the
algorithm followed by analysis and results.

3.1 Problem formulation

Recall that SVI is about stochastic optimization of the
evidence lower bound, L̂(λ, φ). Its solution is has following
steps at each gradient ascent iteration:

1 Amari (1998), while discussing natural gradients for maximum
likelihood estimation, showed that the natural gradient relates to
the Euclidean gradient through inverse Fisher metric projection.



Sample data point : xn ∼ Unif(x1, x2, ..., xN )

E-Step (maximize local) : φ∗ = arg maxφ L̂(λt, φ)

Locally-maximized objective : L(λ) := L̂(λ, φ∗)

M-Step (intermediary params) : λ̂ = arg maxλ L(λ)

Gradient ascent : λt+1 = λt + ρt(λ̂− λt)

First of all, we observe that the objective function L(λ) is
not convex in λ, see (2). Decentralizing of the SVI means
that K agents use SVI for posterior inference on their
own data-sets, such that in the end, the parameters that
define the learned models mutually form a consensus, i.e.
λ1 = λ2 = · · · = λK .

Objective for distributed SVI: With the above example
in mind, we propose distributed-optimization problem as:

minimize

K∑
i=1

gi(λi)

subject to λi = λ1,∀i ∈ {1, 2, . . .K}
λi ∈ Γ

where Γ indicates the feasible set for all the variables,
and gi(λi) := −L(λi). Note that L(λ) denotes the locally
maximized objective, hence φ is omitted. Basically, we
want to perform the M-step of the actual algorithm with
consensus among the agents whereas the initial part of the
SVI algorithm remains the same. The objective function
comprises of the following, ∀i ∈ {1, . . . ,K}:
gi(λi) = −Eφ(λi)[ηg(x, z)]

>∇λiag(λi) + λ>i ∇λiag(λi)

−ag(λi) + const.

Note that only the Eφ(λ) terms encode the information
from local (sampled) observation at current iteration, we
call it sufficient statistics, which means that if we were
to provide the same data to the parallel computational
nodes (each of which runs its own instance of SVI), we
would have similar sufficient statistics vectors. The log-
normalizer ag is only a function of its corresponding
parameter λ. And “const.” terms are unimportant in all
proceeding analysis.

3.2 Proposed distributed solution

ADMM for SVI: We use the augmented Lagrangian with
a quadratic penalty. The Lagrange multipliers are denoted
by yi ∈ Γ. Augmented Lagrangian and minimization
updates for each processor/agent are given as:

Lc =

K∑
i=1

gi(λi) + y>i (λi − λ1) + (c/2)||λi − λ1||22 + const.

λt+1
i ∈ arg min

λ
Lc(λ, λ

t
−i, y

t
i), (4)

yt+1
i = yti + c(λt+1

i − λt+1
1 ).

where λt−i denotes all the variables at time t except
the i-th i.e. λt−i = λtj∈{1,...,i−1,i+1,...,K}, and c is the

penalty parameter in the augmented Lagrangian. Since the
minimzation of the SVI objective gi is itself an iterative
algorithm, so to perform the iterate-minimization step in
(4), we perform one iteration of gradient ascent using
a noisy stochastic gradient estimate, as in SVI, in each

PK

Gradient
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update

Lagrange
multiplier
update

P2

Gradient
ascent
update

Lagrange
multiplier
update

P1

Gradient
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update

yt+1
2

λt+1
2

xK

ytK

λt+1
1

x1 x2

yt2yti
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if t ≤ Neq
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K
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data

PK ’s
data
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∀i

ADMM-based Distributed
SVI framework

*for every iteration

Fig. 1. System diagram showing steps at each iteration

ADMM iteration. To get a noisy estimate, we use global
intermediary parameters (as used in SVI), by sampling a
data point and repeating it N times (See Algorithm 2).
ADMM for iterative solvers such as SVI that rely on
gradient ascent has been discussed by Boyd et al. (2011).

Computing the minimum: To minimize the augmented
Lagrangian we use its natural gradient at time t in gradient
ascent,

∇̂λt
i
Lc = [∇−2ag(λti)]∇λt

i
Lc,

and from (3),

∇̂λt
i
Lc = (λti − λ̂i) + [∇−2ag(λti)](yti + c(λti − λt1)). (5)

Note that the for i = 1, there is a slight trivial difference
in the above update equation. Here, we have used the

intermediary global parameters, λ̂i = Eq[ηg(x(N)
i , z

(N)
i )]

obtained by repeating a data point N times and using
locally-maximized objective. To use gradient ascent we
require computing the Hessian inverse matrix [∇−2ag(λti)].
If we have an estimate of this inverse matrix, we can use
(5) and the following gradient ascent update in place of
(4) in ADMM:

λt+1
i = λti + ρt(−∇̂λt

i
Lc).

Hessian inverse computation: Equation (5) requires
computing the inverse of a Hessian matrix for every learner
i at each iteration t. Such a computation pops out in
many machine learning estimation tasks. This is compu-
tationally expensive especially when the number of local
variables grows as in large data sets. We exploit structural
properties for this computational hurdle. First of all, the
matrix ∇2

λag(λ) is the Fisher-information matrix of the
probability distribution q(β|λ) – it is symmetric positive
definite. Moreover, (as we show in our latent Dirichlet
allocation example later) for many of the commonly used
probability distributions this Hessian has the form of a
diagonal matrix added to a rank-1 matrix:

∇2
λag(λ) = diag(d) + aaT .

The algorithm LiSSA by Agarwal et al. (2016) addresses
the fast computation of Hessian inverse through stochastic
sampling. They propose a novel method of estimating
the large matrix inverse in linear-time for the similar
class of Hessian matrices that we have encountered here.
Their work successively generates samples of the Hessian



matrix and feeds the samples to an unbiased matrix-
inverse estimator. This estimation problem is solved in
linear time based on the size of the parameters’ vector
λ. In our example, the λ vector had roughly 7702 entries.
Thus, the computational burden of large matrix inversion
is decreased greatly, and we can estimate the Hessian
inverse at each iteration. For the implementation of latent
Dirichlet allocation, we show in the appendix, how we
employ a fast approximate matrix inversion technique that
exploits the structure of Hessian matrix making it solvable
in linear time.

Algorithm 2 SVI-ADMM for two players i.e. K = 2

1: Initialize λ
(0)
1 , λ

(0)
2 , c

2: Schedule step-size ρt routine
3: repeat
4: if t > Neq then
5: Sample two data points x1 and x2
6: else
7: Sample one data point for both x = x1(= x2)
8: end if
9: for m← 1 to 2 do

10: Use xi to compute its local variational param-
eters,

φ = Eλt
i
[ηl(x

(N)
i , z

(N)
i )].

11: Apply ADMM λ-minimization-update by com-

puting intermediate global parameters λ̂i and natural
gradient,

λ̂i = Eφ[ηg(x
(N)
i , z

(N)
i )],

∇̂λt
i
Lc = (λti − λ̂i) + ∇−2ag(λti)︸ ︷︷ ︸

Hessian Inverse

(yt + c(λti − λt−i)).

12: Update the global variational parameters using
gradient ascent,

λt+1
i = λti + ρt(−∇̂λt

i
Lc).

13: end for
14: Update the Lagrange multipliers

yt+1 = yt + c(λt+1
2 − λt+1

1 ).

15: until forever

ADMM-based SVI Algorithm: System level diagram for
the working of ADMM-based distributed SVI is shown in
Fig. 1. The complete algorithm for two distributed learners
is summarized in Algorithm 2. For the first Neq iterations,
we provide all the learners with the same data – this is
part of initialization phase and the intuition behind this is
that online learning algorithms are aimed to operate near
equilibrium. This initialization helps in faster convergence
at the cost of data sharing.

4. CONVERGENCE PROPERTIES OF SVI-ADMM

The proposed algorithm is an alternating direction La-
grangian method simultaneously running stochastic gra-
dient ascent. We discuss two necessary notions of conver-
gence in this regard. First of all, the whole methodology
can be thought of as standard ADMM with a quadratic
penalty. Here, the asymptotic convergence of ADMM is
required. The important point to note while studying the
asymptotic convergence of ADMM is that the iterate-
minimization steps at each ADMM iteration are them-

selves stochastic optimization steps in nature. Thus, to
discuss any guarantees on the convergence of ADMM, we
require the convergence of stochastic gradient ascent of
the augmented Lagrangian. This leads us to the second
notion of convergence that of almost-sure convergence for
the simultaneous stochastic optimization sub-problem.

4.1 Asymptotic convergence of ADMM

The convergence of ADMM is guaranteed for convex
problems. Since our problem is a structured non-convex
problem, so we use one of the recent works in regards
to non-convex ADMM by Magnússon et al. (2014). More
detailed work on the convergence of non-convex consensus
problem using ADMM is done by Hong et al. (2015).

Magnússon et al. (2014) (Sec. IV-B) show that there are
certain sufficient conditions that if they hold, the FON (the
first-order-necessary conditions) for a class of non-convex
ADMM problems, are satisfied (Proposition 3). They have
given four conditions for this sufficiency. We enumerate
them in the context of a two-player SVI-ADMM problem
given by:

minimizeλ1,λ2∈Rn g1(λ1) + g2(λ2)

subject to λ1 = λ2, λ1, λ2 ∈ Γ

where, g1 and g2 are non-convex, and Γ is the feasible set
of the variables. The four conditions to satisfy FON are:

(1) The objective functions g1 and g2 should be continu-
ously differentiable.

(2) The set Γ should be closed and expressible in the form
of finite equality and inequality constraints of certain
form (this trivially holds in our case).

(3) The iterate-minimization steps (e.g. (4)) that are part
of the standard ADMM algorithm, should have a local
or global optimal for all t.

(4) Set of gradient vectors of the constraints evaluated
at limit points for both λ1 and λ2 should be linearly
independent – regularity assumption.

For our case in SVI-ADMM, the first two conditions hold
trivially. The fourth condition holds straight-forwardly
because the constraints are linear functions (being a con-
sensus problem) and thus the constraint gradients are
constant vectors. As for the third condition, guarantees on
a local or global optimal computed at each iteration cannot
be easily stated. We see that at each ADMM iteration, our
algorithm goes one step in the direction of a noisy estimate
of the stochastic gradient. To show the existence of local
optimal, we argue using the work by Bottou (1998) on
stochastic gradient learning in the following sub-section.

4.2 Almost-sure convergence of gradient ascent

Authors of Hoffman et al. (2013) also required certain
conditions on the SVI objective to make the stochastic
optimization converge in the end. For non-convex objective
functions to have a local optimum, three-times differentia-
bility and other mild conditions are required, according
to Bottou (1998). The variational objective satisfies those
conditions. In our case, the objective function is an aug-
mented Lagrangian having the sum of affine terms and
variational objectives. The conditions required for online



Table 1. Top words for five topics (centralized)
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Fig. 2. The plots in the first two rows show that the
learned parameters for a randomly chosen topic, for
a distributed learner and a centralized learner pro-
gressively converge to similar outputs (i.e., showing
convergence to an optimum); the third row shows
that as the algorithm iterates, the MSE between the
estimates of the distributed learners decreases (i.e.,
consensus is slowly attained).

stochastic gradient algorithms to converge almost-surely,
are all satisfied 2 by the augmented Lagrangian as well.

Thus, we establish that our proposed algorithm ADMM-
based SVI converges almost-surely to locally optimal λ∗1
and λ∗2 having ∇(g1(λ∗1) + g2(λ∗2)) ≈ 0. In Fig. 4 we
show numerically that perplexity (a measure of model-
fitness) for distributed learners approaches that for a
centralized learner – even though ADMM slows down
the rate of convergence because two iterative algorithms
iterate simultaneously (ADMM iterates and stochastic
gradient iterations).

5. EXPERIMENTS AND RESULTS

We implement latent Dirichlet allocation (LDA) topic
model to test our algorithm. Blei et al. (2003) introduced
probabilistic topic models for classification and prediction
tasks for large corpora of documents. In latent Dirichlet
allocation, each item of document collection is modeled as
a finite mixture over an underlying set of topics. Whereas,
each topic is modeled as an ‘infinite’ mixture over topic
probabilities. The main idea is to learn the hidden struc-
ture that can help in distinguishing documents and articles
that have similar themes. In Table 1, we reproduce the
work by Hoffman et al. (2010) on online LDA for document
classification (which essentially is a centralized learner),
and later on, compare its performance with our distributed
ADMM-based solution. LDA-specific techniques we used
to make ADMM-based SVI fast are given in the Appendix.

2 The augmented Lagrangian is simply the sum of the variational
objective and a quadratic function of primal variables – we use
this observation and the fact that the variational objective already
satisfies the four conditions given in Section 5.1 of Bottou (1998).

Table 2. LDA–ADMM Exp.1 (Top eight words
for four topics)

λ1 λcentral λ1 λcentral

song music roman roman
music song bishop catholic
rock songs catholic bishop

original rock jersey church
musical piano austin christian

best musical cathedral cathedral
songs dance andrew holy
love performed missionary pope

λ1 λcentral λ1 λcentral

democratic mexico war war
mexico governor battle army
seats democratic force battle

mexican republican attack forces
elections senate action regiment
senate mexican operations military

governor senator flying british
state seats crew attack

We use two-learner 100-topic LDA in all our experiments
and the ADMM penalty parameter value c ≈ 10−7. The
first set of experiments (Table 2) infer topic distributions
by analyzing 115,200 random Wikipedia articles. Aim for
this experiment is to compare estimates of distributed
LDA learners with a centralized one λcentral that is pro-
vided with complete data from both learners, P1 and P2.
The initialization parameter Neq ≤ 40. Depicted results
are at equilibrium, i.e., when ||λ1 − λ2||2 is minimized,
and hence we have just shown λcentral and λ1,distributed.
We show words sorted by relevance to the topic in each of
the four topics (columns). The word on top of a column
indicates the highest likelihood for that word to belong to
the corresponding topic in comparison with other words in
the vocabulary. This experiment showed that the equilib-
rium results are comparable. In Table 2, you can observe
that both the centralized and distributed learners agree on
Topic 1 (column one) to be about music, Topic 2 about
religion, Topic 3 about government and so on. In another
similar run, the trend of parameters λ for distributed and
centralized learners was noted, see Fig. 2. The learned
parameters started very differently, but after nearly 500
iterations the distributed and centralized learners give
similar distribution parameters. Fig. 2 also shows that
the sum of squared differences between the Dirichlet dis-
tribution parameters (λ1 and λ2) has decreased greatly
after 1000 iterations. The choice of penalty parameter c
is responsible for the rate of convergence – if increased,
the algorithm converges faster, but this makes it risky in
avoiding overflows such as making λ negative.

In Fig. 3, we have presented learned parameters for dis-
tributed vs. centralized learners after running for one hour.
Top-left and top-right plots show that the two distributed
learners λ1 and λ2 are almost exactly same. Bottom-left
and bottom-right plots show that the centralized learners
(with-all and with-half data respectively) also have simi-
lar outputs. Notably, the peaks in the bottom-right plot
have larger magnitude compared to those in bottom-left –
because bottom-left learner had access to twice more data.

In the second set of experiments (Table 3), the centralized
learner that ran in parallel was only provided with one set
of data that P1 had access to. Whereas, P1 and P2 oper-
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[Showing distribution of one of many topics after analyzing 24320 documents with initialization as a uniform distribution.
Along the x-axis are all dictionary words and along y-axis it shows the probability of each word that it belongs to this single topic.]

Different learners converge to similar estimates

Fig. 3. Plot showing the distribution of word occurrences
for some topic and the performance comparison of
distributed vs. centralized learners. This shows that
given equal amount of different datasets to two SVI
learners (if the data is not mutually shared but only
the model estimates are shared), the overall system
can learn the model as good as how much a joint
(centralized) learner can estimate when it has access
to all the data (bottom-left) and when it has access
to only half of the data (bottom right).

Table 3. LDA–ADMM Exp.2 (Top seven words
for two topics)

λ1 λcentral λ1 λcentral

party liberal theatre theatre
election color stage helena

color party opera shakespeare
council election plays magic
elected elected play kiss

democratic democratic productions jungle
liberal vote musical laughing

ated as distributed SVI-ADMM learners. This experiment
showed that the decentralized learner P1 learned better
than the centralized learner giving better estimates. For
example, in Table 3, estimates of Topic 1 from decentral-
ized and centralized learners reinforce each other, more-
over, in Topic 2 the decentralized learner has learned more
words that belong to the topic theatre such as play, plays
and stage implying stronger learning. The conclusion here
is insightful – if a learner has access to updates by other
learners, it can improve its own accuracy profoundly. Thus,
we conclude that the distributed ADMM-based setting for
SVI can even improve the performance. Next, we analyze
model-fitness of our estimates and argue for convergence.

We use a held-out perplexity metric as a measure of model
fitness. This metric was used by Hoffman et al. (2010).
It is defined as the geomteric mean of inverse marginal
probability of each word from the set of documents used
for testing model fit:

perp(wtest, λ, α) :=exp
(
−(Σi log p(wtest

i |α, β))/(Σi,nw
test
i,n )

)
where wi,n is the number of occurrences of the n-th word
in i-th document and wi is the vector of word occurrences
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Fig. 4. Metric of model-fitness for randomly chosen articles
from Wikipedia corpus as function of number of doc-
uments is analyzed. Batch size is of 128 documents.
Nearly 22k documents are processed every hour.

for i-th document. A low value of this metric for a test-
set of documents, indicates better model fit. Since the
log-marginal likelihood in the above expression can not
be evaluated, so a lower bound on perplexity is used.
Fig. 4 shows that with time held-out perplexity values
decrease for both the centralized and distributed learners,
converging to similar equilibria.

6. CONCLUSION

We have presented a distributed ADMM-based SVI – a
decentralized algorithm that solves separable stochastic
optimization problems and merges their results to achieve
optimal consensus solution. Applications of distributed
learning agent systems are common in IoT framework
especially when different learning systems do not want
to share data with each other but still agree on partial
collaboration and transfer learning. A well-trod example
of latent Dirichlet allocation for probabilistic topic mod-
els is implemented to show comparative results for the
centralized and distributed settings. Results show that
through collaboration without having to share private
data, two or more independent model posterior learners
for SVI can improve their learning capabilities. Due to the
use of stochastic optimization, this algorithm is consider-
ably fast, scalable, and accurate. Moreover, its distributed
learning methodology enhances security and robustness
aspects that underpin modern deep learning goals. The
accuracy of estimates is consistent with standard SVI and
our convergence analysis as well as numerical experiments
show sufficiency for the almost-sure existence of optimal
equilibrium solution.

Appendix A. HESSIAN INVERSION FOR LDA

First of all, the inverse Hessian term ∇−2λ ag1 in (5) is
discussed. Recall that the global random variables β1:K
in LDA topic model were such that each one of them
represented the probability distribution of one of the K
topics over the entire vocabulary of V words. Each βk is
distributed by a Dirichlet distribution on the V −1 simplex
governed by its respective λk ∈ RV+ (positive reals). Hence,
for each topic, we had a vector of global parameters λk
of size V . In the implementation, the vocabulary size is
V = 7702 words. Computation of the Hessian term and
its inverse for such a big-sized λ is challenging. We know
that, for a Dirichlet distribution q(β|λ) ∼ Dir(λ1, ..., λV )
the Fisher information matrix is given as a difference of a



diagonal matrix and a matrix of all ones multiplied by a
scalar Yang and Berger (1996):

∇2
λag =

ψ
′(λ1)

. . .
ψ′(λV )

− ψ′(Σλi)
1 . . . 1

...
. . .

...
1 . . . 1

 ,
= diag(ψ′(λ))− ψ′(Σλi)11>.

where, the function ψ′ : R+ → R+ is the well-known
polygamma function of order one, i.e., the first derivative
of log of gamma function.

For computing the inverse [∇2
λag1 ]−1, we use the fact

the the polygamma function of order one, ψ′(t) resembles
the function 1/t, and that, the parameters λ are strictly
positive. This implies that for large V we have ψ′(Σλi)�
ψ′(λj) for any j ∈ {1, . . . , V }. Now, consider the following
matrix (with vector d ∈ RV+ and scalar κ ≥ 0):

A = diag(d)− κ11>.

Assume κ� di, and so an approximate inverse of A is:

A−1 = diag(e) + κ(ee>) +O(κ2),

where, e = [ 1
d1
. . . 1

dV
]>. This is because,

AA−1 = diag(d)diag(e) + κdiag(d)(ee>)

−κ11>diag(e) +O(κ2),

AA−1 = I +O(κ2).

With this form of the approximate Hessian inverse, the
matrix-vector product∇−2λ agb for any appropriate vector b
is computationally very cheap because it can be computed
without finding the whole matrix: a diagonal matrix times
a vector is merely element-wise product, and for the second
term, we compute the dot product e>b which reduces
it to scalar multiplications with e. Hence, we use this
approximate inverse which does not require computing any
matrix for computing Ã−1b as given in (5).

REFERENCES

Agarwal, N., Bullins, B., and Hazan, E. (2016). Second
order stochastic optimization in linear time. arXiv
preprint arXiv:1602.03943.

Amari, S.I. (1998). Natural gradient works efficiently in
learning. Neural computation, 10(2), 251–276.

Babagholami-Mohamadabadi, B., Yoon, S., and Pavlovic,
V. (2015). D-mfvi: Distributed mean field varia-
tional inference using bregman admm. arXiv preprint
arXiv:1507.00824.

Blei, D.M., Ng, A.Y., and Jordan, M.I. (2003). Latent
dirichlet allocation. The Journal of Machine Learning
Research, 3(1), 993–1022.

Bottou, L. (1998). Online learning and stochastic approx-
imations. On-line learning in neural networks, 17(9),
142.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
(2011). Distributed optimization and statistical learning
via the alternating direction method of multipliers.
Foundations and Trends R© in Machine Learning, 3(1),
1–122.

Campbell, T., Straub, J., Fisher III, J.W., and How,
J.P. (2015). Streaming, distributed variational inference
for bayesian nonparametrics. In Advances in Neural
Information Processing Systems, 280–288.

Eckstein, J. (2012). Augmented lagrangian and alternating
direction methods for convex optimization: A tutorial
and some illustrative computational results. RUTCOR
Research Report, Rutgers University, RRR, 32–2012.

Foti, N., Xu, J., Laird, D., and Fox, E. (2014). Stochastic
variational inference for hidden markov models. In
Advances in Neural Information Processing Systems,
3599–3607.

Gabay, D. and Mercier, B. (1976). A dual algorithm for
the solution of nonlinear variational problems via finite
element approximation. Computers & Mathematics with
Applications, 2(1), 17–40.

Gal, Y., van der Wilk, M., and Rasmussen, C. (2014). Dis-
tributed variational inference in sparse gaussian process
regression and latent variable models. In Advances in
Neural Information Processing Systems, 3257–3265.

Hensman, J., Fusi, N., and Lawrence, N.D. (2013).
Gaussian processes for big data. arXiv preprint
arXiv:1309.6835.

Hoffman, M., Bach, F.R., and Blei, D.M. (2010). Online
learning for latent dirichlet allocation. In advances in
neural information processing systems, 856–864.

Hoffman, M.D. and Blei, D.M. (2015). Structured stochas-
tic variational inference. In Artificial Intelligence and
Statistics.

Hoffman, M.D., Blei, D.M., Wang, C., and Paisley, J.
(2013). Stochastic variational inference. The Journal
of Machine Learning Research, 14(1), 1303–1347.

Hong, M., Luo, Z.Q., and Razaviyayn, M. (2015). Conver-
gence analysis of alternating direction method of multi-
pliers for a family of nonconvex problems. In Acoustics,
Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on, 3836–3840. IEEE.

Hua, J. and Li, C. (2016). Distributed variational bayesian
algorithms over sensor networks. IEEE Transactions on
Signal Processing, 64(3), 783–798.

Johnson, M. and Willsky, A.S. (2014). Stochastic vari-
ational inference for bayesian time series models. In
ICML, 1854–1862.

Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., and Saul,
L.K. (1999). An introduction to variational methods for
graphical models. Machine learning, 37(2), 183–233.

Koller, D. and Friedman, N. (2009). Probabilistic graphical
models: principles and techniques. MIT press.
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